MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submss Structured version   Visualization version   GIF version

Theorem submss 18794
Description: Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
submss.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
submss (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)

Proof of Theorem submss
StepHypRef Expression
1 submrcl 18787 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 submss.b . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2725 . . . . 5 (0g𝑀) = (0g𝑀)
4 eqid 2725 . . . . 5 (𝑀s 𝑆) = (𝑀s 𝑆)
52, 3, 4issubm2 18789 . . . 4 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ (𝑀s 𝑆) ∈ Mnd)))
61, 5syl 17 . . 3 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ (𝑀s 𝑆) ∈ Mnd)))
76ibi 266 . 2 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆𝐵 ∧ (0g𝑀) ∈ 𝑆 ∧ (𝑀s 𝑆) ∈ Mnd))
87simp1d 1139 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  wss 3946  cfv 6553  (class class class)co 7423  Basecbs 17208  s cress 17237  0gc0g 17449  Mndcmnd 18722  SubMndcsubmnd 18767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769
This theorem is referenced by:  submbas  18799  subm0  18800  subsubm  18801  resmhm  18805  resmhm2  18806  mhmima  18810  gsumsubm  18820  gsumwsubmcl  18822  submmulgcl  19106  submmulg  19107  subgacs  19150  finodsubmsubg  19560  submod  19562  lsmub1x  19639  lsmub2x  19640  lsmsubm  19646  smndlsmidm  19649  submcmn2  19832  gsumsubmcl  19912  gsumzadd  19915  xrge0cmn  21397  submtmd  24091  tsmssubm  24130  submarchi  33028  erlbr2d  33096  erler  33097  rlocaddval  33100  rlocmulval  33101  rloccring  33102  rloc0g  33103  rloc1r  33104  rlocf1  33105  ssdifidlprm  33310  finsubmsubg  41931
  Copyright terms: Public domain W3C validator