![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmub2x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub2x | ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 17698 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antrr 719 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Mnd) |
3 | simpr 479 | . . . . . 6 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
4 | 3 | sselda 3826 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
5 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | eqid 2824 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2824 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 5, 6, 7 | mndlid 17663 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
9 | 2, 4, 8 | syl2anc 581 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
10 | 5 | submss 17702 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ 𝐵) |
11 | 10 | ad2antrr 719 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑇 ⊆ 𝐵) |
12 | simplr 787 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑈 ⊆ 𝐵) | |
13 | 7 | subm0cl 17704 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑇) |
14 | 13 | ad2antrr 719 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → (0g‘𝐺) ∈ 𝑇) |
15 | simpr 479 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
16 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
17 | 5, 6, 16 | lsmelvalix 18406 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ((0g‘𝐺) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈)) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
18 | 2, 11, 12, 14, 15, 17 | syl32anc 1503 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
19 | 9, 18 | eqeltrrd 2906 | . . 3 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
20 | 19 | ex 403 | . 2 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑈 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
21 | 20 | ssrdv 3832 | 1 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3797 ‘cfv 6122 (class class class)co 6904 Basecbs 16221 +gcplusg 16304 0gc0g 16452 Mndcmnd 17646 SubMndcsubmnd 17686 LSSumclsm 18399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-submnd 17688 df-lsm 18401 |
This theorem is referenced by: lsmub2 18422 |
Copyright terms: Public domain | W3C validator |