Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmub2x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub2x | ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18543 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antrr 724 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Mnd) |
3 | simpr 486 | . . . . . 6 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
4 | 3 | sselda 3939 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
5 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 5, 6, 7 | mndlid 18507 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
9 | 2, 4, 8 | syl2anc 585 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
10 | 5 | submss 18550 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ 𝐵) |
11 | 10 | ad2antrr 724 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑇 ⊆ 𝐵) |
12 | simplr 767 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑈 ⊆ 𝐵) | |
13 | 7 | subm0cl 18552 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑇) |
14 | 13 | ad2antrr 724 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → (0g‘𝐺) ∈ 𝑇) |
15 | simpr 486 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
16 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
17 | 5, 6, 16 | lsmelvalix 19347 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ((0g‘𝐺) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈)) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
18 | 2, 11, 12, 14, 15, 17 | syl32anc 1378 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
19 | 9, 18 | eqeltrrd 2839 | . . 3 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
20 | 19 | ex 414 | . 2 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑈 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
21 | 20 | ssrdv 3945 | 1 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⊆ wss 3905 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 +gcplusg 17064 0gc0g 17252 Mndcmnd 18487 SubMndcsubmnd 18531 LSSumclsm 19340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-ress 17044 df-plusg 17077 df-0g 17254 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-submnd 18533 df-lsm 19342 |
This theorem is referenced by: lsmub2 19364 |
Copyright terms: Public domain | W3C validator |