MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub2x Structured version   Visualization version   GIF version

Theorem lsmub2x 19689
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmub2x ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈 ⊆ (𝑇 𝑈))

Proof of Theorem lsmub2x
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 submrcl 18837 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
21ad2antrr 725 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝐺 ∈ Mnd)
3 simpr 484 . . . . . 6 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈𝐵)
43sselda 4008 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥𝐵)
5 lsmless2.v . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2740 . . . . . 6 (+g𝐺) = (+g𝐺)
7 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
85, 6, 7mndlid 18792 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
92, 4, 8syl2anc 583 . . . 4 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
105submss 18844 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇𝐵)
1110ad2antrr 725 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑇𝐵)
12 simplr 768 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑈𝐵)
137subm0cl 18846 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
1413ad2antrr 725 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → (0g𝐺) ∈ 𝑇)
15 simpr 484 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥𝑈)
16 lsmless2.s . . . . . 6 = (LSSum‘𝐺)
175, 6, 16lsmelvalix 19683 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ ((0g𝐺) ∈ 𝑇𝑥𝑈)) → ((0g𝐺)(+g𝐺)𝑥) ∈ (𝑇 𝑈))
182, 11, 12, 14, 15, 17syl32anc 1378 . . . 4 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → ((0g𝐺)(+g𝐺)𝑥) ∈ (𝑇 𝑈))
199, 18eqeltrrd 2845 . . 3 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑇 𝑈))
2019ex 412 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → (𝑥𝑈𝑥 ∈ (𝑇 𝑈)))
2120ssrdv 4014 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈 ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772  SubMndcsubmnd 18817  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-lsm 19678
This theorem is referenced by:  lsmub2  19700
  Copyright terms: Public domain W3C validator