Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmub2x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub2x | ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18441 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antrr 723 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Mnd) |
3 | simpr 485 | . . . . . 6 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
4 | 3 | sselda 3921 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
5 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 5, 6, 7 | mndlid 18405 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
9 | 2, 4, 8 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
10 | 5 | submss 18448 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ 𝐵) |
11 | 10 | ad2antrr 723 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑇 ⊆ 𝐵) |
12 | simplr 766 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑈 ⊆ 𝐵) | |
13 | 7 | subm0cl 18450 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑇) |
14 | 13 | ad2antrr 723 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → (0g‘𝐺) ∈ 𝑇) |
15 | simpr 485 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
16 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
17 | 5, 6, 16 | lsmelvalix 19246 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ((0g‘𝐺) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈)) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
18 | 2, 11, 12, 14, 15, 17 | syl32anc 1377 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
19 | 9, 18 | eqeltrrd 2840 | . . 3 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
20 | 19 | ex 413 | . 2 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑈 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
21 | 20 | ssrdv 3927 | 1 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Mndcmnd 18385 SubMndcsubmnd 18429 LSSumclsm 19239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-lsm 19241 |
This theorem is referenced by: lsmub2 19263 |
Copyright terms: Public domain | W3C validator |