Proof of Theorem supp0cosupp0OLD
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ 𝑉) |
2 | 1 | anim2i 619 |
. . . . . . 7
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → (𝑍 ∈ V ∧ 𝐹 ∈ 𝑉)) |
3 | 2 | ancomd 465 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → (𝐹 ∈ 𝑉 ∧ 𝑍 ∈ V)) |
4 | | suppimacnv 7848 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
6 | 5 | eqeq1d 2760 |
. . . 4
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → ((𝐹 supp 𝑍) = ∅ ↔ (◡𝐹 “ (V ∖ {𝑍})) = ∅)) |
7 | | coexg 7639 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘ 𝐺) ∈ V) |
8 | 7 | anim2i 619 |
. . . . . . . 8
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → (𝑍 ∈ V ∧ (𝐹 ∘ 𝐺) ∈ V)) |
9 | 8 | ancomd 465 |
. . . . . . 7
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → ((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ V)) |
10 | | suppimacnv 7848 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
12 | | cnvco 5725 |
. . . . . . . . 9
⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) |
13 | 12 | imaeq1i 5898 |
. . . . . . . 8
⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) |
14 | | imaco 6081 |
. . . . . . . 8
⊢ ((◡𝐺 ∘ ◡𝐹) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
15 | 13, 14 | eqtri 2781 |
. . . . . . 7
⊢ (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) |
16 | | imaeq2 5897 |
. . . . . . . 8
⊢ ((◡𝐹 “ (V ∖ {𝑍})) = ∅ → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) = (◡𝐺 “ ∅)) |
17 | | ima0 5917 |
. . . . . . . 8
⊢ (◡𝐺 “ ∅) = ∅ |
18 | 16, 17 | eqtrdi 2809 |
. . . . . . 7
⊢ ((◡𝐹 “ (V ∖ {𝑍})) = ∅ → (◡𝐺 “ (◡𝐹 “ (V ∖ {𝑍}))) = ∅) |
19 | 15, 18 | syl5eq 2805 |
. . . . . 6
⊢ ((◡𝐹 “ (V ∖ {𝑍})) = ∅ → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) = ∅) |
20 | 11, 19 | sylan9eq 2813 |
. . . . 5
⊢ (((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) ∧ (◡𝐹 “ (V ∖ {𝑍})) = ∅) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
21 | 20 | ex 416 |
. . . 4
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → ((◡𝐹 “ (V ∖ {𝑍})) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
22 | 6, 21 | sylbid 243 |
. . 3
⊢ ((𝑍 ∈ V ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊)) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |
23 | 22 | ex 416 |
. 2
⊢ (𝑍 ∈ V → ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅))) |
24 | | id 22 |
. . . . 5
⊢ (¬
𝑍 ∈ V → ¬
𝑍 ∈
V) |
25 | 24 | intnand 492 |
. . . 4
⊢ (¬
𝑍 ∈ V → ¬
((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ V)) |
26 | | supp0prc 7838 |
. . . 4
⊢ (¬
((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
27 | 25, 26 | syl 17 |
. . 3
⊢ (¬
𝑍 ∈ V → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅) |
28 | 27 | 2a1d 26 |
. 2
⊢ (¬
𝑍 ∈ V → ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅))) |
29 | 23, 28 | pm2.61i 185 |
1
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) |