| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppsssn | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| suppsssn.n | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) |
| suppsssn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| suppsssn | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4737 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) | |
| 2 | suppsssn.n | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) | |
| 3 | 2 | 3expb 1120 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) → 𝐵 = 𝑍) |
| 4 | 1, 3 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍) |
| 5 | suppsssn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | 4, 5 | suppss2 8133 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 ↦ cmpt 5173 (class class class)co 7349 supp csupp 8093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8094 |
| This theorem is referenced by: uvcresum 21700 mamulid 22326 mamurid 22327 |
| Copyright terms: Public domain | W3C validator |