Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppsssn | Structured version Visualization version GIF version |
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
suppsssn.n | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) |
suppsssn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppsssn | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4700 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) | |
2 | suppsssn.n | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) | |
3 | 2 | 3expb 1122 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) → 𝐵 = 𝑍) |
4 | 1, 3 | sylan2b 597 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍) |
5 | suppsssn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | 4, 5 | suppss2 7942 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∖ cdif 3863 ⊆ wss 3866 {csn 4541 ↦ cmpt 5135 (class class class)co 7213 supp csupp 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-supp 7904 |
This theorem is referenced by: uvcresum 20755 mamulid 21338 mamurid 21339 |
Copyright terms: Public domain | W3C validator |