MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsssn Structured version   Visualization version   GIF version

Theorem suppsssn 7568
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
suppsssn.n ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
suppsssn.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppsssn (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppsssn
StepHypRef Expression
1 eldifsn 4506 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘𝐴𝑘𝑊))
2 suppsssn.n . . . 4 ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
323expb 1150 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝑊)) → 𝐵 = 𝑍)
41, 3sylan2b 588 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍)
5 suppsssn.a . 2 (𝜑𝐴𝑉)
64, 5suppss2 7567 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  cdif 3766  wss 3769  {csn 4368  cmpt 4922  (class class class)co 6878   supp csupp 7532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-supp 7533
This theorem is referenced by:  uvcresum  20457  mamulid  20572  mamurid  20573
  Copyright terms: Public domain W3C validator