MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsssn Structured version   Visualization version   GIF version

Theorem suppsssn 8225
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
suppsssn.n ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
suppsssn.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppsssn (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppsssn
StepHypRef Expression
1 eldifsn 4791 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘𝐴𝑘𝑊))
2 suppsssn.n . . . 4 ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
323expb 1119 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝑊)) → 𝐵 = 𝑍)
41, 3sylan2b 594 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍)
5 suppsssn.a . 2 (𝜑𝐴𝑉)
64, 5suppss2 8224 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cdif 3960  wss 3963  {csn 4631  cmpt 5231  (class class class)co 7431   supp csupp 8184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8185
This theorem is referenced by:  uvcresum  21831  mamulid  22463  mamurid  22464
  Copyright terms: Public domain W3C validator