![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppsssn | Structured version Visualization version GIF version |
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
suppsssn.n | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) |
suppsssn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppsssn | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4506 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) | |
2 | suppsssn.n | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) | |
3 | 2 | 3expb 1150 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊)) → 𝐵 = 𝑍) |
4 | 1, 3 | sylan2b 588 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍) |
5 | suppsssn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | 4, 5 | suppss2 7567 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∖ cdif 3766 ⊆ wss 3769 {csn 4368 ↦ cmpt 4922 (class class class)co 6878 supp csupp 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-supp 7533 |
This theorem is referenced by: uvcresum 20457 mamulid 20572 mamurid 20573 |
Copyright terms: Public domain | W3C validator |