MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsssn Structured version   Visualization version   GIF version

Theorem suppsssn 8242
Description: Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
suppsssn.n ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
suppsssn.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppsssn (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppsssn
StepHypRef Expression
1 eldifsn 4811 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑊}) ↔ (𝑘𝐴𝑘𝑊))
2 suppsssn.n . . . 4 ((𝜑𝑘𝐴𝑘𝑊) → 𝐵 = 𝑍)
323expb 1120 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝑊)) → 𝐵 = 𝑍)
41, 3sylan2b 593 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑊})) → 𝐵 = 𝑍)
5 suppsssn.a . 2 (𝜑𝐴𝑉)
64, 5suppss2 8241 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ {𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  {csn 4648  cmpt 5249  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  uvcresum  21836  mamulid  22468  mamurid  22469
  Copyright terms: Public domain W3C validator