MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Visualization version   GIF version

Theorem uvcresum 21836
Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u 𝑈 = (𝑅 unitVec 𝐼)
uvcresum.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcresum.b 𝐵 = (Base‘𝑌)
uvcresum.v · = ( ·𝑠𝑌)
Assertion
Ref Expression
uvcresum ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))

Proof of Theorem uvcresum
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 uvcresum.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3frlmbasf 21803 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
543adant1 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
65feqmptd 6990 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑋𝑎)))
7 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
8 simpl1 1191 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Ring)
9 ringmnd 20270 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
108, 9syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Mnd)
11 simpl2 1192 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝐼𝑊)
12 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑎𝐼)
13 simpl2 1192 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝐼𝑊)
145ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
15 uvcresum.u . . . . . . . . . . . . . . . . 17 𝑈 = (𝑅 unitVec 𝐼)
1615, 1, 3uvcff 21834 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
17163adant3 1132 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈:𝐼𝐵)
1817ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) ∈ 𝐵)
19 uvcresum.v . . . . . . . . . . . . . 14 · = ( ·𝑠𝑌)
20 eqid 2740 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 21809 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)))
2214adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
231, 2, 3frlmbasf 21803 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑈𝑏) ∈ 𝐵) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2413, 18, 23syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2524ffvelcdmda 7118 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑈𝑏)‘𝑎) ∈ (Base‘𝑅))
26 fconstmpt 5762 . . . . . . . . . . . . . . 15 (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏))
2726a1i 11 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏)))
2824feqmptd 6990 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) = (𝑎𝐼 ↦ ((𝑈𝑏)‘𝑎)))
2913, 22, 25, 27, 28offval2 7734 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
3021, 29eqtrd 2780 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
311frlmlmod 21792 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
32313adant3 1132 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑌 ∈ LMod)
3332adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝑌 ∈ LMod)
341frlmsca 21796 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
35343adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 = (Scalar‘𝑌))
3635fveq2d 6924 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3736adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3814, 37eleqtrd 2846 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)))
39 eqid 2740 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
40 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
413, 39, 19, 40lmodvscl 20898 . . . . . . . . . . . . 13 ((𝑌 ∈ LMod ∧ (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑏) ∈ 𝐵) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4233, 38, 18, 41syl3anc 1371 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4330, 42eqeltrrd 2845 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵)
441, 2, 3frlmbasf 21803 . . . . . . . . . . 11 ((𝐼𝑊 ∧ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4513, 43, 44syl2anc 583 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4645fvmptelcdm 7147 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4746an32s 651 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4847fmpttd 7149 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4983ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑅 ∈ Ring)
50113ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝐼𝑊)
51 simp2 1137 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝐼)
52123ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑎𝐼)
53 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝑎)
5415, 49, 50, 51, 52, 53, 7uvcvv0 21833 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑈𝑏)‘𝑎) = (0g𝑅))
5554oveq2d 7464 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑏)(.r𝑅)(0g𝑅)))
5614adantlr 714 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
57563adant3 1132 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → (𝑋𝑏) ∈ (Base‘𝑅))
582, 20, 7ringrz 20317 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
5949, 57, 58syl2anc 583 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6055, 59eqtrd 2780 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = (0g𝑅))
6160, 11suppsssn 8242 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) supp (0g𝑅)) ⊆ {𝑎})
622, 7, 10, 11, 12, 48, 61gsumpt 20004 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎))
63 fveq2 6920 . . . . . . . . . 10 (𝑏 = 𝑎 → (𝑋𝑏) = (𝑋𝑎))
64 fveq2 6920 . . . . . . . . . . 11 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
6564fveq1d 6922 . . . . . . . . . 10 (𝑏 = 𝑎 → ((𝑈𝑏)‘𝑎) = ((𝑈𝑎)‘𝑎))
6663, 65oveq12d 7466 . . . . . . . . 9 (𝑏 = 𝑎 → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
67 eqid 2740 . . . . . . . . 9 (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
68 ovex 7481 . . . . . . . . 9 ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) ∈ V
6966, 67, 68fvmpt 7029 . . . . . . . 8 (𝑎𝐼 → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
7069adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
71 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7215, 8, 11, 12, 71uvcvv1 21832 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑈𝑎)‘𝑎) = (1r𝑅))
7372oveq2d 7464 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = ((𝑋𝑎)(.r𝑅)(1r𝑅)))
745ffvelcdmda 7118 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑋𝑎) ∈ (Base‘𝑅))
752, 20, 71ringridm 20293 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
768, 74, 75syl2anc 583 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
7773, 76eqtrd 2780 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = (𝑋𝑎))
7870, 77eqtrd 2780 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = (𝑋𝑎))
7962, 78eqtrd 2780 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = (𝑋𝑎))
8079mpteq2dva 5266 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑋𝑎)))
816, 80eqtr4d 2783 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
82 eqid 2740 . . . 4 (0g𝑌) = (0g𝑌)
83 simp2 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝐼𝑊)
84 simp1 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 ∈ Ring)
85 mptexg 7258 . . . . . 6 (𝐼𝑊 → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
86853ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
87 funmpt 6616 . . . . . 6 Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
8887a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
89 fvexd 6935 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g𝑌) ∈ V)
901, 7, 3frlmbasfsupp 21801 . . . . . . 7 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
91903adant1 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
9291fsuppimpd 9439 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g𝑅)) ∈ Fin)
9335eqcomd 2746 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Scalar‘𝑌) = 𝑅)
9493fveq2d 6924 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) = (0g𝑅))
9594oveq2d 7464 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) = (𝑋 supp (0g𝑅)))
96 ssid 4031 . . . . . . . . . 10 (𝑋 supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅))
9795, 96eqsstrdi 4063 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g𝑅)))
98 fvexd 6935 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) ∈ V)
995, 97, 83, 98suppssr 8236 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑋𝑏) = (0g‘(Scalar‘𝑌)))
10099oveq1d 7463 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)))
101 eldifi 4154 . . . . . . . 8 (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅))) → 𝑏𝐼)
102101, 30sylan2 592 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
10332adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → 𝑌 ∈ LMod)
104101, 18sylan2 592 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑈𝑏) ∈ 𝐵)
105 eqid 2740 . . . . . . . . 9 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1063, 39, 19, 105, 82lmod0vs 20915 . . . . . . . 8 ((𝑌 ∈ LMod ∧ (𝑈𝑏) ∈ 𝐵) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
107103, 104, 106syl2anc 583 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
108100, 102, 1073eqtr3d 2788 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (0g𝑌))
109108, 83suppss2 8241 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))
110 suppssfifsupp 9449 . . . . 5 ((((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∧ (0g𝑌) ∈ V) ∧ ((𝑋 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
11186, 88, 89, 92, 109, 110syl32anc 1378 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
1121, 3, 82, 83, 83, 84, 43, 111frlmgsum 21815 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
11381, 112eqtr4d 2783 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
1145feqmptd 6990 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑏𝐼 ↦ (𝑋𝑏)))
11517feqmptd 6990 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈 = (𝑏𝐼 ↦ (𝑈𝑏)))
11683, 14, 18, 114, 115offval2 7734 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))))
11730mpteq2dva 5266 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
118116, 117eqtrd 2780 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
119118oveq2d 7464 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑋f · 𝑈)) = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
120113, 119eqtr4d 2783 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  1rcur 20208  Ringcrg 20260  LModclmod 20880   freeLMod cfrlm 21789   unitVec cuvc 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826
This theorem is referenced by:  frlmsslsp  21839
  Copyright terms: Public domain W3C validator