Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Visualization version   GIF version

Theorem uvcresum 20487
 Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u 𝑈 = (𝑅 unitVec 𝐼)
uvcresum.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcresum.b 𝐵 = (Base‘𝑌)
uvcresum.v · = ( ·𝑠𝑌)
Assertion
Ref Expression
uvcresum ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))

Proof of Theorem uvcresum
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2798 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 uvcresum.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3frlmbasf 20454 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
543adant1 1127 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
65feqmptd 6709 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑋𝑎)))
7 eqid 2798 . . . . . . 7 (0g𝑅) = (0g𝑅)
8 simpl1 1188 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Ring)
9 ringmnd 19304 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
108, 9syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Mnd)
11 simpl2 1189 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝐼𝑊)
12 simpr 488 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑎𝐼)
13 simpl2 1189 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝐼𝑊)
145ffvelrnda 6829 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
15 uvcresum.u . . . . . . . . . . . . . . . . 17 𝑈 = (𝑅 unitVec 𝐼)
1615, 1, 3uvcff 20485 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
17163adant3 1129 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈:𝐼𝐵)
1817ffvelrnda 6829 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) ∈ 𝐵)
19 uvcresum.v . . . . . . . . . . . . . 14 · = ( ·𝑠𝑌)
20 eqid 2798 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 20460 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)))
2214adantr 484 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
231, 2, 3frlmbasf 20454 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑈𝑏) ∈ 𝐵) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2413, 18, 23syl2anc 587 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2524ffvelrnda 6829 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑈𝑏)‘𝑎) ∈ (Base‘𝑅))
26 fconstmpt 5579 . . . . . . . . . . . . . . 15 (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏))
2726a1i 11 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏)))
2824feqmptd 6709 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) = (𝑎𝐼 ↦ ((𝑈𝑏)‘𝑎)))
2913, 22, 25, 27, 28offval2 7409 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝐼 × {(𝑋𝑏)}) ∘f (.r𝑅)(𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
3021, 29eqtrd 2833 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
311frlmlmod 20443 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
32313adant3 1129 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑌 ∈ LMod)
3332adantr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝑌 ∈ LMod)
341frlmsca 20447 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
35343adant3 1129 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 = (Scalar‘𝑌))
3635fveq2d 6650 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3736adantr 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3814, 37eleqtrd 2892 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)))
39 eqid 2798 . . . . . . . . . . . . . 14 (Scalar‘𝑌) = (Scalar‘𝑌)
40 eqid 2798 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
413, 39, 19, 40lmodvscl 19648 . . . . . . . . . . . . 13 ((𝑌 ∈ LMod ∧ (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑏) ∈ 𝐵) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4233, 38, 18, 41syl3anc 1368 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4330, 42eqeltrrd 2891 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵)
441, 2, 3frlmbasf 20454 . . . . . . . . . . 11 ((𝐼𝑊 ∧ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4513, 43, 44syl2anc 587 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4645fvmptelrn 6855 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4746an32s 651 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4847fmpttd 6857 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4983ad2ant1 1130 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑅 ∈ Ring)
50113ad2ant1 1130 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝐼𝑊)
51 simp2 1134 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝐼)
52123ad2ant1 1130 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑎𝐼)
53 simp3 1135 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝑎)
5415, 49, 50, 51, 52, 53, 7uvcvv0 20484 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑈𝑏)‘𝑎) = (0g𝑅))
5554oveq2d 7152 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑏)(.r𝑅)(0g𝑅)))
5614adantlr 714 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
57563adant3 1129 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → (𝑋𝑏) ∈ (Base‘𝑅))
582, 20, 7ringrz 19338 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
5949, 57, 58syl2anc 587 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6055, 59eqtrd 2833 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = (0g𝑅))
6160, 11suppsssn 7851 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) supp (0g𝑅)) ⊆ {𝑎})
622, 7, 10, 11, 12, 48, 61gsumpt 19079 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎))
63 fveq2 6646 . . . . . . . . . 10 (𝑏 = 𝑎 → (𝑋𝑏) = (𝑋𝑎))
64 fveq2 6646 . . . . . . . . . . 11 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
6564fveq1d 6648 . . . . . . . . . 10 (𝑏 = 𝑎 → ((𝑈𝑏)‘𝑎) = ((𝑈𝑎)‘𝑎))
6663, 65oveq12d 7154 . . . . . . . . 9 (𝑏 = 𝑎 → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
67 eqid 2798 . . . . . . . . 9 (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
68 ovex 7169 . . . . . . . . 9 ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) ∈ V
6966, 67, 68fvmpt 6746 . . . . . . . 8 (𝑎𝐼 → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
7069adantl 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
71 eqid 2798 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7215, 8, 11, 12, 71uvcvv1 20483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑈𝑎)‘𝑎) = (1r𝑅))
7372oveq2d 7152 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = ((𝑋𝑎)(.r𝑅)(1r𝑅)))
745ffvelrnda 6829 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑋𝑎) ∈ (Base‘𝑅))
752, 20, 71ringridm 19322 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
768, 74, 75syl2anc 587 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
7773, 76eqtrd 2833 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = (𝑋𝑎))
7870, 77eqtrd 2833 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = (𝑋𝑎))
7962, 78eqtrd 2833 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = (𝑋𝑎))
8079mpteq2dva 5126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑋𝑎)))
816, 80eqtr4d 2836 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
82 eqid 2798 . . . 4 (0g𝑌) = (0g𝑌)
83 simp2 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝐼𝑊)
84 simp1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 ∈ Ring)
85 mptexg 6962 . . . . . 6 (𝐼𝑊 → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
86853ad2ant2 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
87 funmpt 6363 . . . . . 6 Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
8887a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
89 fvexd 6661 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g𝑌) ∈ V)
901, 7, 3frlmbasfsupp 20452 . . . . . . 7 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
91903adant1 1127 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
9291fsuppimpd 8827 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g𝑅)) ∈ Fin)
9335eqcomd 2804 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Scalar‘𝑌) = 𝑅)
9493fveq2d 6650 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) = (0g𝑅))
9594oveq2d 7152 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) = (𝑋 supp (0g𝑅)))
96 ssid 3937 . . . . . . . . . 10 (𝑋 supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅))
9795, 96eqsstrdi 3969 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g𝑅)))
98 fvexd 6661 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) ∈ V)
995, 97, 83, 98suppssr 7847 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑋𝑏) = (0g‘(Scalar‘𝑌)))
10099oveq1d 7151 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)))
101 eldifi 4054 . . . . . . . 8 (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅))) → 𝑏𝐼)
102101, 30sylan2 595 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
10332adantr 484 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → 𝑌 ∈ LMod)
104101, 18sylan2 595 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑈𝑏) ∈ 𝐵)
105 eqid 2798 . . . . . . . . 9 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1063, 39, 19, 105, 82lmod0vs 19664 . . . . . . . 8 ((𝑌 ∈ LMod ∧ (𝑈𝑏) ∈ 𝐵) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
107103, 104, 106syl2anc 587 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
108100, 102, 1073eqtr3d 2841 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (0g𝑌))
109108, 83suppss2 7850 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))
110 suppssfifsupp 8835 . . . . 5 ((((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∧ (0g𝑌) ∈ V) ∧ ((𝑋 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
11186, 88, 89, 92, 109, 110syl32anc 1375 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
1121, 3, 82, 83, 83, 84, 43, 111frlmgsum 20466 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
11381, 112eqtr4d 2836 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
1145feqmptd 6709 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑏𝐼 ↦ (𝑋𝑏)))
11517feqmptd 6709 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈 = (𝑏𝐼 ↦ (𝑈𝑏)))
11683, 14, 18, 114, 115offval2 7409 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))))
11730mpteq2dva 5126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
118116, 117eqtrd 2833 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋f · 𝑈) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
119118oveq2d 7152 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑋f · 𝑈)) = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
120113, 119eqtr4d 2836 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋f · 𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  Vcvv 3441   ∖ cdif 3878   ⊆ wss 3881  {csn 4525   class class class wbr 5031   ↦ cmpt 5111   × cxp 5518  Fun wfun 6319  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∘f cof 7389   supp csupp 7816  Fincfn 8495   finSupp cfsupp 8820  Basecbs 16478  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  1rcur 19248  Ringcrg 19294  LModclmod 19631   freeLMod cfrlm 20440   unitVec cuvc 20476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18221  df-subg 18272  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-dsmm 20426  df-frlm 20441  df-uvc 20477 This theorem is referenced by:  frlmsslsp  20490
 Copyright terms: Public domain W3C validator