| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | uvcresum.y | . . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝐼) | 
| 2 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 |  | uvcresum.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝑌) | 
| 4 | 1, 2, 3 | frlmbasf 21781 | . . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) | 
| 5 | 4 | 3adant1 1130 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) | 
| 6 | 5 | feqmptd 6976 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) | 
| 7 |  | eqid 2736 | . . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 8 |  | simpl1 1191 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Ring) | 
| 9 |  | ringmnd 20241 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | 
| 10 | 8, 9 | syl 17 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Mnd) | 
| 11 |  | simpl2 1192 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ 𝑊) | 
| 12 |  | simpr 484 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) | 
| 13 |  | simpl2 1192 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) | 
| 14 | 5 | ffvelcdmda 7103 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) | 
| 15 |  | uvcresum.u | . . . . . . . . . . . . . . . . 17
⊢ 𝑈 = (𝑅 unitVec 𝐼) | 
| 16 | 15, 1, 3 | uvcff 21812 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) | 
| 17 | 16 | 3adant3 1132 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈:𝐼⟶𝐵) | 
| 18 | 17 | ffvelcdmda 7103 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) ∈ 𝐵) | 
| 19 |  | uvcresum.v | . . . . . . . . . . . . . 14
⊢  · = (
·𝑠 ‘𝑌) | 
| 20 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 21 | 1, 3, 2, 13, 14, 18, 19, 20 | frlmvscafval 21787 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏))) | 
| 22 | 14 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) | 
| 23 | 1, 2, 3 | frlmbasf 21781 | . . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑈‘𝑏) ∈ 𝐵) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) | 
| 24 | 13, 18, 23 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) | 
| 25 | 24 | ffvelcdmda 7103 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑏)‘𝑎) ∈ (Base‘𝑅)) | 
| 26 |  | fconstmpt 5746 | . . . . . . . . . . . . . . 15
⊢ (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏)) | 
| 27 | 26 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏))) | 
| 28 | 24 | feqmptd 6976 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) = (𝑎 ∈ 𝐼 ↦ ((𝑈‘𝑏)‘𝑎))) | 
| 29 | 13, 22, 25, 27, 28 | offval2 7718 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) | 
| 30 | 21, 29 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) | 
| 31 | 1 | frlmlmod 21770 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) | 
| 32 | 31 | 3adant3 1132 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑌 ∈ LMod) | 
| 33 | 32 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝑌 ∈ LMod) | 
| 34 | 1 | frlmsca 21774 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝑌)) | 
| 35 | 34 | 3adant3 1132 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘𝑌)) | 
| 36 | 35 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) | 
| 38 | 14, 37 | eleqtrd 2842 | . . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌))) | 
| 39 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) | 
| 40 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) | 
| 41 | 3, 39, 19, 40 | lmodvscl 20877 | . . . . . . . . . . . . 13
⊢ ((𝑌 ∈ LMod ∧ (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈‘𝑏) ∈ 𝐵) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) | 
| 42 | 33, 38, 18, 41 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) | 
| 43 | 30, 42 | eqeltrrd 2841 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) | 
| 44 | 1, 2, 3 | frlmbasf 21781 | . . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) | 
| 45 | 13, 43, 44 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) | 
| 46 | 45 | fvmptelcdm 7132 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) | 
| 47 | 46 | an32s 652 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) | 
| 48 | 47 | fmpttd 7134 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) | 
| 49 | 8 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑅 ∈ Ring) | 
| 50 | 11 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝐼 ∈ 𝑊) | 
| 51 |  | simp2 1137 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ∈ 𝐼) | 
| 52 | 12 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑎 ∈ 𝐼) | 
| 53 |  | simp3 1138 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ≠ 𝑎) | 
| 54 | 15, 49, 50, 51, 52, 53, 7 | uvcvv0 21811 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑈‘𝑏)‘𝑎) = (0g‘𝑅)) | 
| 55 | 54 | oveq2d 7448 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅))) | 
| 56 | 14 | adantlr 715 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) | 
| 57 | 56 | 3adant3 1132 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → (𝑋‘𝑏) ∈ (Base‘𝑅)) | 
| 58 | 2, 20, 7 | ringrz 20292 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑏) ∈ (Base‘𝑅)) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 59 | 49, 57, 58 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 60 | 55, 59 | eqtrd 2776 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = (0g‘𝑅)) | 
| 61 | 60, 11 | suppsssn 8227 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) supp (0g‘𝑅)) ⊆ {𝑎}) | 
| 62 | 2, 7, 10, 11, 12, 48, 61 | gsumpt 19981 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎)) | 
| 63 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑏 = 𝑎 → (𝑋‘𝑏) = (𝑋‘𝑎)) | 
| 64 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | 
| 65 | 64 | fveq1d 6907 | . . . . . . . . . 10
⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏)‘𝑎) = ((𝑈‘𝑎)‘𝑎)) | 
| 66 | 63, 65 | oveq12d 7450 | . . . . . . . . 9
⊢ (𝑏 = 𝑎 → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) | 
| 67 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) | 
| 68 |  | ovex 7465 | . . . . . . . . 9
⊢ ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) ∈ V | 
| 69 | 66, 67, 68 | fvmpt 7015 | . . . . . . . 8
⊢ (𝑎 ∈ 𝐼 → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) | 
| 70 | 69 | adantl 481 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) | 
| 71 |  | eqid 2736 | . . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 72 | 15, 8, 11, 12, 71 | uvcvv1 21810 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑎)‘𝑎) = (1r‘𝑅)) | 
| 73 | 72 | oveq2d 7448 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅))) | 
| 74 | 5 | ffvelcdmda 7103 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑎) ∈ (Base‘𝑅)) | 
| 75 | 2, 20, 71 | ringridm 20268 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑎) ∈ (Base‘𝑅)) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) | 
| 76 | 8, 74, 75 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) | 
| 77 | 73, 76 | eqtrd 2776 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = (𝑋‘𝑎)) | 
| 78 | 70, 77 | eqtrd 2776 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = (𝑋‘𝑎)) | 
| 79 | 62, 78 | eqtrd 2776 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = (𝑋‘𝑎)) | 
| 80 | 79 | mpteq2dva 5241 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) | 
| 81 | 6, 80 | eqtr4d 2779 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) | 
| 82 |  | eqid 2736 | . . . 4
⊢
(0g‘𝑌) = (0g‘𝑌) | 
| 83 |  | simp2 1137 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑊) | 
| 84 |  | simp1 1136 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) | 
| 85 |  | mptexg 7242 | . . . . . 6
⊢ (𝐼 ∈ 𝑊 → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) | 
| 86 | 85 | 3ad2ant2 1134 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) | 
| 87 |  | funmpt 6603 | . . . . . 6
⊢ Fun
(𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) | 
| 88 | 87 | a1i 11 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) | 
| 89 |  | fvexd 6920 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (0g‘𝑌) ∈ V) | 
| 90 | 1, 7, 3 | frlmbasfsupp 21779 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) | 
| 91 | 90 | 3adant1 1130 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) | 
| 92 | 91 | fsuppimpd 9410 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp (0g‘𝑅)) ∈ Fin) | 
| 93 | 35 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Scalar‘𝑌) = 𝑅) | 
| 94 | 93 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) = (0g‘𝑅)) | 
| 95 | 94 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) = (𝑋 supp (0g‘𝑅))) | 
| 96 |  | ssid 4005 | . . . . . . . . . 10
⊢ (𝑋 supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅)) | 
| 97 | 95, 96 | eqsstrdi 4027 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g‘𝑅))) | 
| 98 |  | fvexd 6920 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) ∈ V) | 
| 99 | 5, 97, 83, 98 | suppssr 8221 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑋‘𝑏) = (0g‘(Scalar‘𝑌))) | 
| 100 | 99 | oveq1d 7447 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) =
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏))) | 
| 101 |  | eldifi 4130 | . . . . . . . 8
⊢ (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅))) → 𝑏 ∈ 𝐼) | 
| 102 | 101, 30 | sylan2 593 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) | 
| 103 | 32 | adantr 480 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → 𝑌 ∈ LMod) | 
| 104 | 101, 18 | sylan2 593 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑈‘𝑏) ∈ 𝐵) | 
| 105 |  | eqid 2736 | . . . . . . . . 9
⊢
(0g‘(Scalar‘𝑌)) =
(0g‘(Scalar‘𝑌)) | 
| 106 | 3, 39, 19, 105, 82 | lmod0vs 20894 | . . . . . . . 8
⊢ ((𝑌 ∈ LMod ∧ (𝑈‘𝑏) ∈ 𝐵) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) | 
| 107 | 103, 104,
106 | syl2anc 584 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) | 
| 108 | 100, 102,
107 | 3eqtr3d 2784 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (0g‘𝑌)) | 
| 109 | 108, 83 | suppss2 8226 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅))) | 
| 110 |  | suppssfifsupp 9421 | . . . . 5
⊢ ((((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∧ (0g‘𝑌) ∈ V) ∧ ((𝑋 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅)))) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) | 
| 111 | 86, 88, 89, 92, 109, 110 | syl32anc 1379 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) | 
| 112 | 1, 3, 82, 83, 83, 84, 43, 111 | frlmgsum 21793 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) | 
| 113 | 81, 112 | eqtr4d 2779 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) | 
| 114 | 5 | feqmptd 6976 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑏 ∈ 𝐼 ↦ (𝑋‘𝑏))) | 
| 115 | 17 | feqmptd 6976 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈 = (𝑏 ∈ 𝐼 ↦ (𝑈‘𝑏))) | 
| 116 | 83, 14, 18, 114, 115 | offval2 7718 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏)))) | 
| 117 | 30 | mpteq2dva 5241 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏))) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) | 
| 118 | 116, 117 | eqtrd 2776 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) | 
| 119 | 118 | oveq2d 7448 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑋 ∘f · 𝑈)) = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) | 
| 120 | 113, 119 | eqtr4d 2779 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) |