| Step | Hyp | Ref
| Expression |
| 1 | | uvcresum.y |
. . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| 2 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | uvcresum.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
| 4 | 1, 2, 3 | frlmbasf 21725 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) |
| 5 | 4 | 3adant1 1130 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) |
| 6 | 5 | feqmptd 6952 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) |
| 7 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 8 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 9 | | ringmnd 20208 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Mnd) |
| 11 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 12 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) |
| 13 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 14 | 5 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
| 15 | | uvcresum.u |
. . . . . . . . . . . . . . . . 17
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| 16 | 15, 1, 3 | uvcff 21756 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| 17 | 16 | 3adant3 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈:𝐼⟶𝐵) |
| 18 | 17 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) ∈ 𝐵) |
| 19 | | uvcresum.v |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑌) |
| 20 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 21 | 1, 3, 2, 13, 14, 18, 19, 20 | frlmvscafval 21731 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏))) |
| 22 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
| 23 | 1, 2, 3 | frlmbasf 21725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑈‘𝑏) ∈ 𝐵) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) |
| 24 | 13, 18, 23 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) |
| 25 | 24 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑏)‘𝑎) ∈ (Base‘𝑅)) |
| 26 | | fconstmpt 5721 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏)) |
| 27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏))) |
| 28 | 24 | feqmptd 6952 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) = (𝑎 ∈ 𝐼 ↦ ((𝑈‘𝑏)‘𝑎))) |
| 29 | 13, 22, 25, 27, 28 | offval2 7696 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
| 30 | 21, 29 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
| 31 | 1 | frlmlmod 21714 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
| 32 | 31 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑌 ∈ LMod) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝑌 ∈ LMod) |
| 34 | 1 | frlmsca 21718 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝑌)) |
| 35 | 34 | 3adant3 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘𝑌)) |
| 36 | 35 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
| 38 | 14, 37 | eleqtrd 2837 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌))) |
| 39 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
| 40 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
| 41 | 3, 39, 19, 40 | lmodvscl 20840 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ LMod ∧ (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈‘𝑏) ∈ 𝐵) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) |
| 42 | 33, 38, 18, 41 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) |
| 43 | 30, 42 | eqeltrrd 2836 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) |
| 44 | 1, 2, 3 | frlmbasf 21725 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
| 45 | 13, 43, 44 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
| 46 | 45 | fvmptelcdm 7108 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) |
| 47 | 46 | an32s 652 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) |
| 48 | 47 | fmpttd 7110 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
| 49 | 8 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑅 ∈ Ring) |
| 50 | 11 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝐼 ∈ 𝑊) |
| 51 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ∈ 𝐼) |
| 52 | 12 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑎 ∈ 𝐼) |
| 53 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ≠ 𝑎) |
| 54 | 15, 49, 50, 51, 52, 53, 7 | uvcvv0 21755 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑈‘𝑏)‘𝑎) = (0g‘𝑅)) |
| 55 | 54 | oveq2d 7426 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅))) |
| 56 | 14 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
| 57 | 56 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
| 58 | 2, 20, 7 | ringrz 20259 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑏) ∈ (Base‘𝑅)) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 59 | 49, 57, 58 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 60 | 55, 59 | eqtrd 2771 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = (0g‘𝑅)) |
| 61 | 60, 11 | suppsssn 8205 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) supp (0g‘𝑅)) ⊆ {𝑎}) |
| 62 | 2, 7, 10, 11, 12, 48, 61 | gsumpt 19948 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎)) |
| 63 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑎 → (𝑋‘𝑏) = (𝑋‘𝑎)) |
| 64 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) |
| 65 | 64 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏)‘𝑎) = ((𝑈‘𝑎)‘𝑎)) |
| 66 | 63, 65 | oveq12d 7428 |
. . . . . . . . 9
⊢ (𝑏 = 𝑎 → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
| 67 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) |
| 68 | | ovex 7443 |
. . . . . . . . 9
⊢ ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) ∈ V |
| 69 | 66, 67, 68 | fvmpt 6991 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐼 → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
| 70 | 69 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
| 71 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 72 | 15, 8, 11, 12, 71 | uvcvv1 21754 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑎)‘𝑎) = (1r‘𝑅)) |
| 73 | 72 | oveq2d 7426 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅))) |
| 74 | 5 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑎) ∈ (Base‘𝑅)) |
| 75 | 2, 20, 71 | ringridm 20235 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑎) ∈ (Base‘𝑅)) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) |
| 76 | 8, 74, 75 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) |
| 77 | 73, 76 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = (𝑋‘𝑎)) |
| 78 | 70, 77 | eqtrd 2771 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = (𝑋‘𝑎)) |
| 79 | 62, 78 | eqtrd 2771 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = (𝑋‘𝑎)) |
| 80 | 79 | mpteq2dva 5219 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) |
| 81 | 6, 80 | eqtr4d 2774 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
| 82 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 83 | | simp2 1137 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
| 84 | | simp1 1136 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 85 | | mptexg 7218 |
. . . . . 6
⊢ (𝐼 ∈ 𝑊 → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) |
| 86 | 85 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) |
| 87 | | funmpt 6579 |
. . . . . 6
⊢ Fun
(𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
| 88 | 87 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
| 89 | | fvexd 6896 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (0g‘𝑌) ∈ V) |
| 90 | 1, 7, 3 | frlmbasfsupp 21723 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) |
| 91 | 90 | 3adant1 1130 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) |
| 92 | 91 | fsuppimpd 9386 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp (0g‘𝑅)) ∈ Fin) |
| 93 | 35 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Scalar‘𝑌) = 𝑅) |
| 94 | 93 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) = (0g‘𝑅)) |
| 95 | 94 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) = (𝑋 supp (0g‘𝑅))) |
| 96 | | ssid 3986 |
. . . . . . . . . 10
⊢ (𝑋 supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅)) |
| 97 | 95, 96 | eqsstrdi 4008 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g‘𝑅))) |
| 98 | | fvexd 6896 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) ∈ V) |
| 99 | 5, 97, 83, 98 | suppssr 8199 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑋‘𝑏) = (0g‘(Scalar‘𝑌))) |
| 100 | 99 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) =
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏))) |
| 101 | | eldifi 4111 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅))) → 𝑏 ∈ 𝐼) |
| 102 | 101, 30 | sylan2 593 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
| 103 | 32 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → 𝑌 ∈ LMod) |
| 104 | 101, 18 | sylan2 593 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑈‘𝑏) ∈ 𝐵) |
| 105 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘(Scalar‘𝑌)) =
(0g‘(Scalar‘𝑌)) |
| 106 | 3, 39, 19, 105, 82 | lmod0vs 20857 |
. . . . . . . 8
⊢ ((𝑌 ∈ LMod ∧ (𝑈‘𝑏) ∈ 𝐵) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) |
| 107 | 103, 104,
106 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) |
| 108 | 100, 102,
107 | 3eqtr3d 2779 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (0g‘𝑌)) |
| 109 | 108, 83 | suppss2 8204 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅))) |
| 110 | | suppssfifsupp 9397 |
. . . . 5
⊢ ((((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∧ (0g‘𝑌) ∈ V) ∧ ((𝑋 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅)))) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) |
| 111 | 86, 88, 89, 92, 109, 110 | syl32anc 1380 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) |
| 112 | 1, 3, 82, 83, 83, 84, 43, 111 | frlmgsum 21737 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
| 113 | 81, 112 | eqtr4d 2774 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
| 114 | 5 | feqmptd 6952 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑏 ∈ 𝐼 ↦ (𝑋‘𝑏))) |
| 115 | 17 | feqmptd 6952 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈 = (𝑏 ∈ 𝐼 ↦ (𝑈‘𝑏))) |
| 116 | 83, 14, 18, 114, 115 | offval2 7696 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏)))) |
| 117 | 30 | mpteq2dva 5219 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏))) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
| 118 | 116, 117 | eqtrd 2771 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
| 119 | 118 | oveq2d 7426 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑋 ∘f · 𝑈)) = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
| 120 | 113, 119 | eqtr4d 2774 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) |