Step | Hyp | Ref
| Expression |
1 | | uvcresum.y |
. . . . . . 7
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
2 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | uvcresum.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
4 | 1, 2, 3 | frlmbasf 20722 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) |
5 | 4 | 3adant1 1132 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) |
6 | 5 | feqmptd 6780 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) |
7 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
8 | | simpl1 1193 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Ring) |
9 | | ringmnd 19572 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑅 ∈ Mnd) |
11 | | simpl2 1194 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
12 | | simpr 488 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) |
13 | | simpl2 1194 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
14 | 5 | ffvelrnda 6904 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
15 | | uvcresum.u |
. . . . . . . . . . . . . . . . 17
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
16 | 15, 1, 3 | uvcff 20753 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
17 | 16 | 3adant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈:𝐼⟶𝐵) |
18 | 17 | ffvelrnda 6904 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) ∈ 𝐵) |
19 | | uvcresum.v |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑌) |
20 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) |
21 | 1, 3, 2, 13, 14, 18, 19, 20 | frlmvscafval 20728 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏))) |
22 | 14 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
23 | 1, 2, 3 | frlmbasf 20722 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑈‘𝑏) ∈ 𝐵) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) |
24 | 13, 18, 23 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏):𝐼⟶(Base‘𝑅)) |
25 | 24 | ffvelrnda 6904 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑏)‘𝑎) ∈ (Base‘𝑅)) |
26 | | fconstmpt 5611 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏)) |
27 | 26 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝐼 × {(𝑋‘𝑏)}) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑏))) |
28 | 24 | feqmptd 6780 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑈‘𝑏) = (𝑎 ∈ 𝐼 ↦ ((𝑈‘𝑏)‘𝑎))) |
29 | 13, 22, 25, 27, 28 | offval2 7488 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝐼 × {(𝑋‘𝑏)}) ∘f
(.r‘𝑅)(𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
30 | 21, 29 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
31 | 1 | frlmlmod 20711 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
32 | 31 | 3adant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑌 ∈ LMod) |
33 | 32 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → 𝑌 ∈ LMod) |
34 | 1 | frlmsca 20715 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝑌)) |
35 | 34 | 3adant3 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 = (Scalar‘𝑌)) |
36 | 35 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
37 | 36 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌))) |
38 | 14, 37 | eleqtrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌))) |
39 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
40 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
41 | 3, 39, 19, 40 | lmodvscl 19916 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ LMod ∧ (𝑋‘𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈‘𝑏) ∈ 𝐵) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) |
42 | 33, 38, 18, 41 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏) · (𝑈‘𝑏)) ∈ 𝐵) |
43 | 30, 42 | eqeltrrd 2839 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) |
44 | 1, 2, 3 | frlmbasf 20722 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
45 | 13, 43, 44 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
46 | 45 | fvmptelrn 6930 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ 𝐼) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) |
47 | 46 | an32s 652 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) ∈ (Base‘𝑅)) |
48 | 47 | fmpttd 6932 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))):𝐼⟶(Base‘𝑅)) |
49 | 8 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑅 ∈ Ring) |
50 | 11 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝐼 ∈ 𝑊) |
51 | | simp2 1139 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ∈ 𝐼) |
52 | 12 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑎 ∈ 𝐼) |
53 | | simp3 1140 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → 𝑏 ≠ 𝑎) |
54 | 15, 49, 50, 51, 52, 53, 7 | uvcvv0 20752 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑈‘𝑏)‘𝑎) = (0g‘𝑅)) |
55 | 54 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅))) |
56 | 14 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
57 | 56 | 3adant3 1134 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
58 | 2, 20, 7 | ringrz 19606 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑏) ∈ (Base‘𝑅)) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
59 | 49, 57, 58 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
60 | 55, 59 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) ∧ 𝑏 ∈ 𝐼 ∧ 𝑏 ≠ 𝑎) → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = (0g‘𝑅)) |
61 | 60, 11 | suppsssn 7943 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) supp (0g‘𝑅)) ⊆ {𝑎}) |
62 | 2, 7, 10, 11, 12, 48, 61 | gsumpt 19347 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎)) |
63 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑎 → (𝑋‘𝑏) = (𝑋‘𝑎)) |
64 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) |
65 | 64 | fveq1d 6719 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏)‘𝑎) = ((𝑈‘𝑎)‘𝑎)) |
66 | 63, 65 | oveq12d 7231 |
. . . . . . . . 9
⊢ (𝑏 = 𝑎 → ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
67 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) |
68 | | ovex 7246 |
. . . . . . . . 9
⊢ ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) ∈ V |
69 | 66, 67, 68 | fvmpt 6818 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐼 → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
70 | 69 | adantl 485 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎))) |
71 | | eqid 2737 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
72 | 15, 8, 11, 12, 71 | uvcvv1 20751 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑈‘𝑎)‘𝑎) = (1r‘𝑅)) |
73 | 72 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅))) |
74 | 5 | ffvelrnda 6904 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑋‘𝑎) ∈ (Base‘𝑅)) |
75 | 2, 20, 71 | ringridm 19590 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑎) ∈ (Base‘𝑅)) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) |
76 | 8, 74, 75 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)(1r‘𝑅)) = (𝑋‘𝑎)) |
77 | 73, 76 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑋‘𝑎)(.r‘𝑅)((𝑈‘𝑎)‘𝑎)) = (𝑋‘𝑎)) |
78 | 70, 77 | eqtrd 2777 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → ((𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))‘𝑎) = (𝑋‘𝑎)) |
79 | 62, 78 | eqtrd 2777 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑎 ∈ 𝐼) → (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) = (𝑋‘𝑎)) |
80 | 79 | mpteq2dva 5150 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑋‘𝑎))) |
81 | 6, 80 | eqtr4d 2780 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
82 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑌) = (0g‘𝑌) |
83 | | simp2 1139 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
84 | | simp1 1138 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
85 | | mptexg 7037 |
. . . . . 6
⊢ (𝐼 ∈ 𝑊 → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) |
86 | 85 | 3ad2ant2 1136 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V) |
87 | | funmpt 6418 |
. . . . . 6
⊢ Fun
(𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
88 | 87 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
89 | | fvexd 6732 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (0g‘𝑌) ∈ V) |
90 | 1, 7, 3 | frlmbasfsupp 20720 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) |
91 | 90 | 3adant1 1132 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp (0g‘𝑅)) |
92 | 91 | fsuppimpd 8992 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp (0g‘𝑅)) ∈ Fin) |
93 | 35 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (Scalar‘𝑌) = 𝑅) |
94 | 93 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) = (0g‘𝑅)) |
95 | 94 | oveq2d 7229 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) = (𝑋 supp (0g‘𝑅))) |
96 | | ssid 3923 |
. . . . . . . . . 10
⊢ (𝑋 supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅)) |
97 | 95, 96 | eqsstrdi 3955 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 supp
(0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g‘𝑅))) |
98 | | fvexd 6732 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) →
(0g‘(Scalar‘𝑌)) ∈ V) |
99 | 5, 97, 83, 98 | suppssr 7938 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑋‘𝑏) = (0g‘(Scalar‘𝑌))) |
100 | 99 | oveq1d 7228 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) =
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏))) |
101 | | eldifi 4041 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅))) → 𝑏 ∈ 𝐼) |
102 | 101, 30 | sylan2 596 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → ((𝑋‘𝑏) · (𝑈‘𝑏)) = (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) |
103 | 32 | adantr 484 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → 𝑌 ∈ LMod) |
104 | 101, 18 | sylan2 596 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑈‘𝑏) ∈ 𝐵) |
105 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘(Scalar‘𝑌)) =
(0g‘(Scalar‘𝑌)) |
106 | 3, 39, 19, 105, 82 | lmod0vs 19932 |
. . . . . . . 8
⊢ ((𝑌 ∈ LMod ∧ (𝑈‘𝑏) ∈ 𝐵) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) |
107 | 103, 104,
106 | syl2anc 587 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) →
((0g‘(Scalar‘𝑌)) · (𝑈‘𝑏)) = (0g‘𝑌)) |
108 | 100, 102,
107 | 3eqtr3d 2785 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g‘𝑅)))) → (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))) = (0g‘𝑌)) |
109 | 108, 83 | suppss2 7942 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅))) |
110 | | suppssfifsupp 9000 |
. . . . 5
⊢ ((((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) ∧ (0g‘𝑌) ∈ V) ∧ ((𝑋 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) supp (0g‘𝑌)) ⊆ (𝑋 supp (0g‘𝑅)))) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) |
111 | 86, 88, 89, 92, 109, 110 | syl32anc 1380 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))) finSupp (0g‘𝑌)) |
112 | 1, 3, 82, 83, 83, 84, 43, 111 | frlmgsum 20734 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) = (𝑎 ∈ 𝐼 ↦ (𝑅 Σg (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
113 | 81, 112 | eqtr4d 2780 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
114 | 5 | feqmptd 6780 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑏 ∈ 𝐼 ↦ (𝑋‘𝑏))) |
115 | 17 | feqmptd 6780 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑈 = (𝑏 ∈ 𝐼 ↦ (𝑈‘𝑏))) |
116 | 83, 14, 18, 114, 115 | offval2 7488 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏)))) |
117 | 30 | mpteq2dva 5150 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑏 ∈ 𝐼 ↦ ((𝑋‘𝑏) · (𝑈‘𝑏))) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
118 | 116, 117 | eqtrd 2777 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∘f · 𝑈) = (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎))))) |
119 | 118 | oveq2d 7229 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑌 Σg (𝑋 ∘f · 𝑈)) = (𝑌 Σg (𝑏 ∈ 𝐼 ↦ (𝑎 ∈ 𝐼 ↦ ((𝑋‘𝑏)(.r‘𝑅)((𝑈‘𝑏)‘𝑎)))))) |
120 | 113, 119 | eqtr4d 2780 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) |