![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailval | Structured version Visualization version GIF version |
Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | β’ π = dom π· |
Ref | Expression |
---|---|
tailval | β’ ((π· β DirRel β§ π΄ β π) β ((tailβπ·)βπ΄) = (π· β {π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailfval.1 | . . . . 5 β’ π = dom π· | |
2 | 1 | tailfval 35560 | . . . 4 β’ (π· β DirRel β (tailβπ·) = (π₯ β π β¦ (π· β {π₯}))) |
3 | 2 | fveq1d 6893 | . . 3 β’ (π· β DirRel β ((tailβπ·)βπ΄) = ((π₯ β π β¦ (π· β {π₯}))βπ΄)) |
4 | 3 | adantr 481 | . 2 β’ ((π· β DirRel β§ π΄ β π) β ((tailβπ·)βπ΄) = ((π₯ β π β¦ (π· β {π₯}))βπ΄)) |
5 | id 22 | . . 3 β’ (π΄ β π β π΄ β π) | |
6 | imaexg 7908 | . . 3 β’ (π· β DirRel β (π· β {π΄}) β V) | |
7 | sneq 4638 | . . . . 5 β’ (π₯ = π΄ β {π₯} = {π΄}) | |
8 | 7 | imaeq2d 6059 | . . . 4 β’ (π₯ = π΄ β (π· β {π₯}) = (π· β {π΄})) |
9 | eqid 2732 | . . . 4 β’ (π₯ β π β¦ (π· β {π₯})) = (π₯ β π β¦ (π· β {π₯})) | |
10 | 8, 9 | fvmptg 6996 | . . 3 β’ ((π΄ β π β§ (π· β {π΄}) β V) β ((π₯ β π β¦ (π· β {π₯}))βπ΄) = (π· β {π΄})) |
11 | 5, 6, 10 | syl2anr 597 | . 2 β’ ((π· β DirRel β§ π΄ β π) β ((π₯ β π β¦ (π· β {π₯}))βπ΄) = (π· β {π΄})) |
12 | 4, 11 | eqtrd 2772 | 1 β’ ((π· β DirRel β§ π΄ β π) β ((tailβπ·)βπ΄) = (π· β {π΄})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 β¦ cmpt 5231 dom cdm 5676 β cima 5679 βcfv 6543 DirRelcdir 18551 tailctail 18552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-dir 18553 df-tail 18554 |
This theorem is referenced by: eltail 35562 |
Copyright terms: Public domain | W3C validator |