Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailval Structured version   Visualization version   GIF version

Theorem tailval 36396
Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailval ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))

Proof of Theorem tailval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailfval 36395 . . . 4 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
32fveq1d 6883 . . 3 (𝐷 ∈ DirRel → ((tail‘𝐷)‘𝐴) = ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴))
43adantr 480 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴))
5 id 22 . . 3 (𝐴𝑋𝐴𝑋)
6 imaexg 7914 . . 3 (𝐷 ∈ DirRel → (𝐷 “ {𝐴}) ∈ V)
7 sneq 4616 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
87imaeq2d 6052 . . . 4 (𝑥 = 𝐴 → (𝐷 “ {𝑥}) = (𝐷 “ {𝐴}))
9 eqid 2736 . . . 4 (𝑥𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥}))
108, 9fvmptg 6989 . . 3 ((𝐴𝑋 ∧ (𝐷 “ {𝐴}) ∈ V) → ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴}))
115, 6, 10syl2anr 597 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴}))
124, 11eqtrd 2771 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cmpt 5206  dom cdm 5659  cima 5662  cfv 6536  DirRelcdir 18609  tailctail 18610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-dir 18611  df-tail 18612
This theorem is referenced by:  eltail  36397
  Copyright terms: Public domain W3C validator