Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailval Structured version   Visualization version   GIF version

Theorem tailval 35561
Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailval ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ ((tailβ€˜π·)β€˜π΄) = (𝐷 β€œ {𝐴}))

Proof of Theorem tailval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailfval 35560 . . . 4 (𝐷 ∈ DirRel β†’ (tailβ€˜π·) = (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯})))
32fveq1d 6893 . . 3 (𝐷 ∈ DirRel β†’ ((tailβ€˜π·)β€˜π΄) = ((π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯}))β€˜π΄))
43adantr 481 . 2 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ ((tailβ€˜π·)β€˜π΄) = ((π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯}))β€˜π΄))
5 id 22 . . 3 (𝐴 ∈ 𝑋 β†’ 𝐴 ∈ 𝑋)
6 imaexg 7908 . . 3 (𝐷 ∈ DirRel β†’ (𝐷 β€œ {𝐴}) ∈ V)
7 sneq 4638 . . . . 5 (π‘₯ = 𝐴 β†’ {π‘₯} = {𝐴})
87imaeq2d 6059 . . . 4 (π‘₯ = 𝐴 β†’ (𝐷 β€œ {π‘₯}) = (𝐷 β€œ {𝐴}))
9 eqid 2732 . . . 4 (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯})) = (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯}))
108, 9fvmptg 6996 . . 3 ((𝐴 ∈ 𝑋 ∧ (𝐷 β€œ {𝐴}) ∈ V) β†’ ((π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯}))β€˜π΄) = (𝐷 β€œ {𝐴}))
115, 6, 10syl2anr 597 . 2 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯}))β€˜π΄) = (𝐷 β€œ {𝐴}))
124, 11eqtrd 2772 1 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ ((tailβ€˜π·)β€˜π΄) = (𝐷 β€œ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628   ↦ cmpt 5231  dom cdm 5676   β€œ cima 5679  β€˜cfv 6543  DirRelcdir 18551  tailctail 18552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-dir 18553  df-tail 18554
This theorem is referenced by:  eltail  35562
  Copyright terms: Public domain W3C validator