| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tailval | Structured version Visualization version GIF version | ||
| Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| tailval | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tailfval.1 | . . . . 5 ⊢ 𝑋 = dom 𝐷 | |
| 2 | 1 | tailfval 36345 | . . . 4 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| 3 | 2 | fveq1d 6828 | . . 3 ⊢ (𝐷 ∈ DirRel → ((tail‘𝐷)‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴)) |
| 5 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
| 6 | imaexg 7853 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝐴}) ∈ V) | |
| 7 | sneq 4589 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 8 | 7 | imaeq2d 6015 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐷 “ {𝑥}) = (𝐷 “ {𝐴})) |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) | |
| 10 | 8, 9 | fvmptg 6932 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐷 “ {𝐴}) ∈ V) → ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴})) |
| 11 | 5, 6, 10 | syl2anr 597 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴})) |
| 12 | 4, 11 | eqtrd 2764 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 ↦ cmpt 5176 dom cdm 5623 “ cima 5626 ‘cfv 6486 DirRelcdir 18518 tailctail 18519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-dir 18520 df-tail 18521 |
| This theorem is referenced by: eltail 36347 |
| Copyright terms: Public domain | W3C validator |