Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailval Structured version   Visualization version   GIF version

Theorem tailval 34562
Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailval ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))

Proof of Theorem tailval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailfval 34561 . . . 4 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
32fveq1d 6776 . . 3 (𝐷 ∈ DirRel → ((tail‘𝐷)‘𝐴) = ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴))
43adantr 481 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴))
5 id 22 . . 3 (𝐴𝑋𝐴𝑋)
6 imaexg 7762 . . 3 (𝐷 ∈ DirRel → (𝐷 “ {𝐴}) ∈ V)
7 sneq 4571 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
87imaeq2d 5969 . . . 4 (𝑥 = 𝐴 → (𝐷 “ {𝑥}) = (𝐷 “ {𝐴}))
9 eqid 2738 . . . 4 (𝑥𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥}))
108, 9fvmptg 6873 . . 3 ((𝐴𝑋 ∧ (𝐷 “ {𝐴}) ∈ V) → ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴}))
115, 6, 10syl2anr 597 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴}))
124, 11eqtrd 2778 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157  dom cdm 5589  cima 5592  cfv 6433  DirRelcdir 18312  tailctail 18313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-dir 18314  df-tail 18315
This theorem is referenced by:  eltail  34563
  Copyright terms: Public domain W3C validator