| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tailval | Structured version Visualization version GIF version | ||
| Description: The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| tailval | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tailfval.1 | . . . . 5 ⊢ 𝑋 = dom 𝐷 | |
| 2 | 1 | tailfval 36427 | . . . 4 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| 3 | 2 | fveq1d 6833 | . . 3 ⊢ (𝐷 ∈ DirRel → ((tail‘𝐷)‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴)) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴)) |
| 5 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
| 6 | imaexg 7852 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝐷 “ {𝐴}) ∈ V) | |
| 7 | sneq 4587 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 8 | 7 | imaeq2d 6016 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐷 “ {𝑥}) = (𝐷 “ {𝐴})) |
| 9 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥})) | |
| 10 | 8, 9 | fvmptg 6936 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐷 “ {𝐴}) ∈ V) → ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴})) |
| 11 | 5, 6, 10 | syl2anr 597 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))‘𝐴) = (𝐷 “ {𝐴})) |
| 12 | 4, 11 | eqtrd 2768 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 ↦ cmpt 5176 dom cdm 5621 “ cima 5624 ‘cfv 6489 DirRelcdir 18510 tailctail 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-dir 18512 df-tail 18513 |
| This theorem is referenced by: eltail 36429 |
| Copyright terms: Public domain | W3C validator |