MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnpropd Structured version   Visualization version   GIF version

Theorem topnpropd 17323
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
Assertion
Ref Expression
topnpropd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 7376 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2733 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
64, 5topnval 17321 . 2 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
7 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
8 eqid 2733 . . 3 (TopSet‘𝐿) = (TopSet‘𝐿)
97, 8topnval 17321 . 2 ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)
103, 6, 93eqtr3g 2796 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  cfv 6497  (class class class)co 7358  Basecbs 17088  TopSetcts 17144  t crest 17307  TopOpenctopn 17308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-rest 17309  df-topn 17310
This theorem is referenced by:  sratopn  20669  tpsprop2d  22304  nrgtrg  24070  zhmnrg  32605
  Copyright terms: Public domain W3C validator