![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnpropd | Structured version Visualization version GIF version |
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
Ref | Expression |
---|---|
topnpropd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 1, 2 | oveq12d 7426 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
4 | eqid 2732 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2732 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
6 | 4, 5 | topnval 17379 | . 2 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
7 | eqid 2732 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
8 | eqid 2732 | . . 3 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
9 | 7, 8 | topnval 17379 | . 2 ⊢ ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿) |
10 | 3, 6, 9 | 3eqtr3g 2795 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 TopSetcts 17202 ↾t crest 17365 TopOpenctopn 17366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-rest 17367 df-topn 17368 |
This theorem is referenced by: sratopn 20804 tpsprop2d 22440 nrgtrg 24206 zhmnrg 32942 |
Copyright terms: Public domain | W3C validator |