MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnpropd Structured version   Visualization version   GIF version

Theorem topnpropd 17064
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
Assertion
Ref Expression
topnpropd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 7273 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2738 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
64, 5topnval 17062 . 2 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
7 eqid 2738 . . 3 (Base‘𝐿) = (Base‘𝐿)
8 eqid 2738 . . 3 (TopSet‘𝐿) = (TopSet‘𝐿)
97, 8topnval 17062 . 2 ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)
103, 6, 93eqtr3g 2802 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cfv 6418  (class class class)co 7255  Basecbs 16840  TopSetcts 16894  t crest 17048  TopOpenctopn 17049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-topn 17051
This theorem is referenced by:  sratopn  20367  tpsprop2d  21996  nrgtrg  23760  zhmnrg  31817
  Copyright terms: Public domain W3C validator