MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnpropd Structured version   Visualization version   GIF version

Theorem topnpropd 17483
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
Assertion
Ref Expression
topnpropd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 7449 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2735 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
64, 5topnval 17481 . 2 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
7 eqid 2735 . . 3 (Base‘𝐿) = (Base‘𝐿)
8 eqid 2735 . . 3 (TopSet‘𝐿) = (TopSet‘𝐿)
97, 8topnval 17481 . 2 ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)
103, 6, 93eqtr3g 2798 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cfv 6563  (class class class)co 7431  Basecbs 17245  TopSetcts 17304  t crest 17467  TopOpenctopn 17468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-rest 17469  df-topn 17470
This theorem is referenced by:  sratopn  21208  tpsprop2d  22961  nrgtrg  24727  zhmnrg  33928
  Copyright terms: Public domain W3C validator