![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topnpropd | Structured version Visualization version GIF version |
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
topnpropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
topnpropd.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
Ref | Expression |
---|---|
topnpropd | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topnpropd.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
2 | topnpropd.1 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 1, 2 | oveq12d 7423 | . 2 ⊢ (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿))) |
4 | eqid 2726 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2726 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
6 | 4, 5 | topnval 17389 | . 2 ⊢ ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾) |
7 | eqid 2726 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
8 | eqid 2726 | . . 3 ⊢ (TopSet‘𝐿) = (TopSet‘𝐿) | |
9 | 7, 8 | topnval 17389 | . 2 ⊢ ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿) |
10 | 3, 6, 9 | 3eqtr3g 2789 | 1 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 TopSetcts 17212 ↾t crest 17375 TopOpenctopn 17376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-rest 17377 df-topn 17378 |
This theorem is referenced by: sratopn 21039 tpsprop2d 22796 nrgtrg 24562 zhmnrg 33477 |
Copyright terms: Public domain | W3C validator |