MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnpropd Structured version   Visualization version   GIF version

Theorem topnpropd 17417
Description: The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.)
Hypotheses
Ref Expression
topnpropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
topnpropd.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
Assertion
Ref Expression
topnpropd (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))

Proof of Theorem topnpropd
StepHypRef Expression
1 topnpropd.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
2 topnpropd.1 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
31, 2oveq12d 7434 . 2 (𝜑 → ((TopSet‘𝐾) ↾t (Base‘𝐾)) = ((TopSet‘𝐿) ↾t (Base‘𝐿)))
4 eqid 2725 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2725 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
64, 5topnval 17415 . 2 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
7 eqid 2725 . . 3 (Base‘𝐿) = (Base‘𝐿)
8 eqid 2725 . . 3 (TopSet‘𝐿) = (TopSet‘𝐿)
97, 8topnval 17415 . 2 ((TopSet‘𝐿) ↾t (Base‘𝐿)) = (TopOpen‘𝐿)
103, 6, 93eqtr3g 2788 1 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cfv 6543  (class class class)co 7416  Basecbs 17179  TopSetcts 17238  t crest 17401  TopOpenctopn 17402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-rest 17403  df-topn 17404
This theorem is referenced by:  sratopn  21080  tpsprop2d  22859  nrgtrg  24625  zhmnrg  33625
  Copyright terms: Public domain W3C validator