MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnid Structured version   Visualization version   GIF version

Theorem topnid 17156
Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnid (𝐽 ⊆ 𝒫 𝐵𝐽 = (TopOpen‘𝑊))

Proof of Theorem topnid
StepHypRef Expression
1 topnval.1 . . . 4 𝐵 = (Base‘𝑊)
21fvexi 6780 . . 3 𝐵 ∈ V
3 restid2 17151 . . 3 ((𝐵 ∈ V ∧ 𝐽 ⊆ 𝒫 𝐵) → (𝐽t 𝐵) = 𝐽)
42, 3mpan 687 . 2 (𝐽 ⊆ 𝒫 𝐵 → (𝐽t 𝐵) = 𝐽)
5 topnval.2 . . 3 𝐽 = (TopSet‘𝑊)
61, 5topnval 17155 . 2 (𝐽t 𝐵) = (TopOpen‘𝑊)
74, 6eqtr3di 2793 1 (𝐽 ⊆ 𝒫 𝐵𝐽 = (TopOpen‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3429  wss 3886  𝒫 cpw 4533  cfv 6426  (class class class)co 7267  Basecbs 16922  TopSetcts 16978  t crest 17141  TopOpenctopn 17142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-1st 7820  df-2nd 7821  df-rest 17143  df-topn 17144
This theorem is referenced by:  topontopn  22099  prdstopn  22789  imastopn  22881  setsmstopn  23643  tngtopn  23824  circtopn  31795  rspectopn  31825
  Copyright terms: Public domain W3C validator