MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnid Structured version   Visualization version   GIF version

Theorem topnid 17374
Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnid (𝐽 ⊆ 𝒫 𝐵𝐽 = (TopOpen‘𝑊))

Proof of Theorem topnid
StepHypRef Expression
1 topnval.1 . . . 4 𝐵 = (Base‘𝑊)
21fvexi 6854 . . 3 𝐵 ∈ V
3 restid2 17369 . . 3 ((𝐵 ∈ V ∧ 𝐽 ⊆ 𝒫 𝐵) → (𝐽t 𝐵) = 𝐽)
42, 3mpan 690 . 2 (𝐽 ⊆ 𝒫 𝐵 → (𝐽t 𝐵) = 𝐽)
5 topnval.2 . . 3 𝐽 = (TopSet‘𝑊)
61, 5topnval 17373 . 2 (𝐽t 𝐵) = (TopOpen‘𝑊)
74, 6eqtr3di 2779 1 (𝐽 ⊆ 𝒫 𝐵𝐽 = (TopOpen‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559  cfv 6499  (class class class)co 7369  Basecbs 17155  TopSetcts 17202  t crest 17359  TopOpenctopn 17360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-rest 17361  df-topn 17362
This theorem is referenced by:  topontopn  22860  prdstopn  23548  imastopn  23640  setsmstopn  24399  tngtopn  24571  circtopn  33820  rspectopn  33850
  Copyright terms: Public domain W3C validator