| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topnid | Structured version Visualization version GIF version | ||
| Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| topnval.2 | ⊢ 𝐽 = (TopSet‘𝑊) |
| Ref | Expression |
|---|---|
| topnid | ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topnval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6836 | . . 3 ⊢ 𝐵 ∈ V |
| 3 | restid2 17334 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐽 ⊆ 𝒫 𝐵) → (𝐽 ↾t 𝐵) = 𝐽) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐽 ⊆ 𝒫 𝐵 → (𝐽 ↾t 𝐵) = 𝐽) |
| 5 | topnval.2 | . . 3 ⊢ 𝐽 = (TopSet‘𝑊) | |
| 6 | 1, 5 | topnval 17338 | . 2 ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) |
| 7 | 4, 6 | eqtr3di 2781 | 1 ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TopSetcts 17167 ↾t crest 17324 TopOpenctopn 17325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-rest 17326 df-topn 17327 |
| This theorem is referenced by: topontopn 22855 prdstopn 23543 imastopn 23635 setsmstopn 24393 tngtopn 24565 circtopn 33850 rspectopn 33880 |
| Copyright terms: Public domain | W3C validator |