Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restsubel Structured version   Visualization version   GIF version

Theorem restsubel 45147
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
restsubel.1 (𝜑𝐽𝑉)
restsubel.2 (𝜑 𝐽𝐽)
restsubel.3 (𝜑𝐴 𝐽)
Assertion
Ref Expression
restsubel (𝜑𝐴 ∈ (𝐽t 𝐴))

Proof of Theorem restsubel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restsubel.2 . . 3 (𝜑 𝐽𝐽)
2 ineq1 4176 . . . . 5 (𝑥 = 𝐽 → (𝑥𝐴) = ( 𝐽𝐴))
32eqeq2d 2740 . . . 4 (𝑥 = 𝐽 → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
43adantl 481 . . 3 ((𝜑𝑥 = 𝐽) → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
5 incom 4172 . . . . . 6 ( 𝐽𝐴) = (𝐴 𝐽)
65a1i 11 . . . . 5 (𝜑 → ( 𝐽𝐴) = (𝐴 𝐽))
7 restsubel.3 . . . . . 6 (𝜑𝐴 𝐽)
8 dfss2 3932 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
97, 8sylib 218 . . . . 5 (𝜑 → (𝐴 𝐽) = 𝐴)
106, 9eqtrd 2764 . . . 4 (𝜑 → ( 𝐽𝐴) = 𝐴)
1110eqcomd 2735 . . 3 (𝜑𝐴 = ( 𝐽𝐴))
121, 4, 11rspcedvd 3590 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐴))
13 restsubel.1 . . 3 (𝜑𝐽𝑉)
141, 7ssexd 5279 . . 3 (𝜑𝐴 ∈ V)
15 elrest 17390 . . 3 ((𝐽𝑉𝐴 ∈ V) → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1613, 14, 15syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1712, 16mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  wss 3914   cuni 4871  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by:  toprestsubel  45148
  Copyright terms: Public domain W3C validator