Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restsubel Structured version   Visualization version   GIF version

Theorem restsubel 43929
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
restsubel.1 (𝜑𝐽𝑉)
restsubel.2 (𝜑 𝐽𝐽)
restsubel.3 (𝜑𝐴 𝐽)
Assertion
Ref Expression
restsubel (𝜑𝐴 ∈ (𝐽t 𝐴))

Proof of Theorem restsubel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restsubel.2 . . 3 (𝜑 𝐽𝐽)
2 ineq1 4205 . . . . 5 (𝑥 = 𝐽 → (𝑥𝐴) = ( 𝐽𝐴))
32eqeq2d 2743 . . . 4 (𝑥 = 𝐽 → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
43adantl 482 . . 3 ((𝜑𝑥 = 𝐽) → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
5 incom 4201 . . . . . 6 ( 𝐽𝐴) = (𝐴 𝐽)
65a1i 11 . . . . 5 (𝜑 → ( 𝐽𝐴) = (𝐴 𝐽))
7 restsubel.3 . . . . . 6 (𝜑𝐴 𝐽)
8 df-ss 3965 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
97, 8sylib 217 . . . . 5 (𝜑 → (𝐴 𝐽) = 𝐴)
106, 9eqtrd 2772 . . . 4 (𝜑 → ( 𝐽𝐴) = 𝐴)
1110eqcomd 2738 . . 3 (𝜑𝐴 = ( 𝐽𝐴))
121, 4, 11rspcedvd 3614 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐴))
13 restsubel.1 . . 3 (𝜑𝐽𝑉)
141, 7ssexd 5324 . . 3 (𝜑𝐴 ∈ V)
15 elrest 17375 . . 3 ((𝐽𝑉𝐴 ∈ V) → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1613, 14, 15syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1712, 16mpbird 256 1 (𝜑𝐴 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cin 3947  wss 3948   cuni 4908  (class class class)co 7411  t crest 17368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-rest 17370
This theorem is referenced by:  toprestsubel  43930
  Copyright terms: Public domain W3C validator