Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restsubel Structured version   Visualization version   GIF version

Theorem restsubel 45096
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
restsubel.1 (𝜑𝐽𝑉)
restsubel.2 (𝜑 𝐽𝐽)
restsubel.3 (𝜑𝐴 𝐽)
Assertion
Ref Expression
restsubel (𝜑𝐴 ∈ (𝐽t 𝐴))

Proof of Theorem restsubel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restsubel.2 . . 3 (𝜑 𝐽𝐽)
2 ineq1 4221 . . . . 5 (𝑥 = 𝐽 → (𝑥𝐴) = ( 𝐽𝐴))
32eqeq2d 2746 . . . 4 (𝑥 = 𝐽 → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
43adantl 481 . . 3 ((𝜑𝑥 = 𝐽) → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
5 incom 4217 . . . . . 6 ( 𝐽𝐴) = (𝐴 𝐽)
65a1i 11 . . . . 5 (𝜑 → ( 𝐽𝐴) = (𝐴 𝐽))
7 restsubel.3 . . . . . 6 (𝜑𝐴 𝐽)
8 dfss2 3981 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
97, 8sylib 218 . . . . 5 (𝜑 → (𝐴 𝐽) = 𝐴)
106, 9eqtrd 2775 . . . 4 (𝜑 → ( 𝐽𝐴) = 𝐴)
1110eqcomd 2741 . . 3 (𝜑𝐴 = ( 𝐽𝐴))
121, 4, 11rspcedvd 3624 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐴))
13 restsubel.1 . . 3 (𝜑𝐽𝑉)
141, 7ssexd 5330 . . 3 (𝜑𝐴 ∈ V)
15 elrest 17474 . . 3 ((𝐽𝑉𝐴 ∈ V) → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1613, 14, 15syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1712, 16mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cin 3962  wss 3963   cuni 4912  (class class class)co 7431  t crest 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17469
This theorem is referenced by:  toprestsubel  45097
  Copyright terms: Public domain W3C validator