![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restsubel | Structured version Visualization version GIF version |
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
restsubel.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
restsubel.2 | ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) |
restsubel.3 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
restsubel | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restsubel.2 | . . 3 ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) | |
2 | ineq1 4221 | . . . . 5 ⊢ (𝑥 = ∪ 𝐽 → (𝑥 ∩ 𝐴) = (∪ 𝐽 ∩ 𝐴)) | |
3 | 2 | eqeq2d 2746 | . . . 4 ⊢ (𝑥 = ∪ 𝐽 → (𝐴 = (𝑥 ∩ 𝐴) ↔ 𝐴 = (∪ 𝐽 ∩ 𝐴))) |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ∪ 𝐽) → (𝐴 = (𝑥 ∩ 𝐴) ↔ 𝐴 = (∪ 𝐽 ∩ 𝐴))) |
5 | incom 4217 | . . . . . 6 ⊢ (∪ 𝐽 ∩ 𝐴) = (𝐴 ∩ ∪ 𝐽) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (∪ 𝐽 ∩ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
7 | restsubel.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) | |
8 | dfss2 3981 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) = 𝐴) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ ∪ 𝐽) = 𝐴) |
10 | 6, 9 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → (∪ 𝐽 ∩ 𝐴) = 𝐴) |
11 | 10 | eqcomd 2741 | . . 3 ⊢ (𝜑 → 𝐴 = (∪ 𝐽 ∩ 𝐴)) |
12 | 1, 4, 11 | rspcedvd 3624 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴)) |
13 | restsubel.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
14 | 1, 7 | ssexd 5330 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | elrest 17474 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴))) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴))) |
17 | 12, 16 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 (class class class)co 7431 ↾t crest 17467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17469 |
This theorem is referenced by: toprestsubel 45097 |
Copyright terms: Public domain | W3C validator |