![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restsubel | Structured version Visualization version GIF version |
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
restsubel.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
restsubel.2 | ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) |
restsubel.3 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
restsubel | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restsubel.2 | . . 3 ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) | |
2 | ineq1 4234 | . . . . 5 ⊢ (𝑥 = ∪ 𝐽 → (𝑥 ∩ 𝐴) = (∪ 𝐽 ∩ 𝐴)) | |
3 | 2 | eqeq2d 2751 | . . . 4 ⊢ (𝑥 = ∪ 𝐽 → (𝐴 = (𝑥 ∩ 𝐴) ↔ 𝐴 = (∪ 𝐽 ∩ 𝐴))) |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ∪ 𝐽) → (𝐴 = (𝑥 ∩ 𝐴) ↔ 𝐴 = (∪ 𝐽 ∩ 𝐴))) |
5 | incom 4230 | . . . . . 6 ⊢ (∪ 𝐽 ∩ 𝐴) = (𝐴 ∩ ∪ 𝐽) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (∪ 𝐽 ∩ 𝐴) = (𝐴 ∩ ∪ 𝐽)) |
7 | restsubel.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) | |
8 | dfss2 3994 | . . . . . 6 ⊢ (𝐴 ⊆ ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) = 𝐴) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ ∪ 𝐽) = 𝐴) |
10 | 6, 9 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → (∪ 𝐽 ∩ 𝐴) = 𝐴) |
11 | 10 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = (∪ 𝐽 ∩ 𝐴)) |
12 | 1, 4, 11 | rspcedvd 3637 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴)) |
13 | restsubel.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
14 | 1, 7 | ssexd 5342 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
15 | elrest 17487 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴))) | |
16 | 13, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐴))) |
17 | 12, 16 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 (class class class)co 7448 ↾t crest 17480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rest 17482 |
This theorem is referenced by: toprestsubel 45059 |
Copyright terms: Public domain | W3C validator |