Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restsubel Structured version   Visualization version   GIF version

Theorem restsubel 45277
Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
restsubel.1 (𝜑𝐽𝑉)
restsubel.2 (𝜑 𝐽𝐽)
restsubel.3 (𝜑𝐴 𝐽)
Assertion
Ref Expression
restsubel (𝜑𝐴 ∈ (𝐽t 𝐴))

Proof of Theorem restsubel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 restsubel.2 . . 3 (𝜑 𝐽𝐽)
2 ineq1 4162 . . . . 5 (𝑥 = 𝐽 → (𝑥𝐴) = ( 𝐽𝐴))
32eqeq2d 2744 . . . 4 (𝑥 = 𝐽 → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
43adantl 481 . . 3 ((𝜑𝑥 = 𝐽) → (𝐴 = (𝑥𝐴) ↔ 𝐴 = ( 𝐽𝐴)))
5 incom 4158 . . . . . 6 ( 𝐽𝐴) = (𝐴 𝐽)
65a1i 11 . . . . 5 (𝜑 → ( 𝐽𝐴) = (𝐴 𝐽))
7 restsubel.3 . . . . . 6 (𝜑𝐴 𝐽)
8 dfss2 3916 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
97, 8sylib 218 . . . . 5 (𝜑 → (𝐴 𝐽) = 𝐴)
106, 9eqtrd 2768 . . . 4 (𝜑 → ( 𝐽𝐴) = 𝐴)
1110eqcomd 2739 . . 3 (𝜑𝐴 = ( 𝐽𝐴))
121, 4, 11rspcedvd 3575 . 2 (𝜑 → ∃𝑥𝐽 𝐴 = (𝑥𝐴))
13 restsubel.1 . . 3 (𝜑𝐽𝑉)
141, 7ssexd 5266 . . 3 (𝜑𝐴 ∈ V)
15 elrest 17335 . . 3 ((𝐽𝑉𝐴 ∈ V) → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1613, 14, 15syl2anc 584 . 2 (𝜑 → (𝐴 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝐴 = (𝑥𝐴)))
1712, 16mpbird 257 1 (𝜑𝐴 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  cin 3897  wss 3898   cuni 4860  (class class class)co 7354  t crest 17328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-rest 17330
This theorem is referenced by:  toprestsubel  45278
  Copyright terms: Public domain W3C validator