Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval Structured version   Visualization version   GIF version

Theorem tsmsval 22740
 Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval.a (𝜑𝐴𝑊)
tsmsval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tsmsval (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval
StepHypRef Expression
1 tsmsval.b . 2 𝐵 = (Base‘𝐺)
2 tsmsval.j . 2 𝐽 = (TopOpen‘𝐺)
3 tsmsval.s . 2 𝑆 = (𝒫 𝐴 ∩ Fin)
4 tsmsval.l . 2 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 tsmsval.g . 2 (𝜑𝐺𝑉)
6 tsmsval.f . . 3 (𝜑𝐹:𝐴𝐵)
7 tsmsval.a . . 3 (𝜑𝐴𝑊)
81fvexi 6663 . . . 4 𝐵 ∈ V
98a1i 11 . . 3 (𝜑𝐵 ∈ V)
10 fex2 7624 . . 3 ((𝐹:𝐴𝐵𝐴𝑊𝐵 ∈ V) → 𝐹 ∈ V)
116, 7, 9, 10syl3anc 1368 . 2 (𝜑𝐹 ∈ V)
126fdmd 6501 . 2 (𝜑 → dom 𝐹 = 𝐴)
131, 2, 3, 4, 5, 11, 12tsmsval2 22739 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  {crab 3113  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884  𝒫 cpw 4500   ↦ cmpt 5113  ran crn 5524   ↾ cres 5525  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Fincfn 8496  Basecbs 16479  TopOpenctopn 16691   Σg cgsu 16710  filGencfg 20084   fLimf cflf 22544   tsums ctsu 22735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-tsms 22736 This theorem is referenced by:  eltsms  22742  haustsms  22745  tsmscls  22747  tsmsmhm  22755  tsmsadd  22756
 Copyright terms: Public domain W3C validator