MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval Structured version   Visualization version   GIF version

Theorem tsmsval 24067
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval.a (𝜑𝐴𝑊)
tsmsval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tsmsval (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval
StepHypRef Expression
1 tsmsval.b . 2 𝐵 = (Base‘𝐺)
2 tsmsval.j . 2 𝐽 = (TopOpen‘𝐺)
3 tsmsval.s . 2 𝑆 = (𝒫 𝐴 ∩ Fin)
4 tsmsval.l . 2 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 tsmsval.g . 2 (𝜑𝐺𝑉)
6 tsmsval.f . . 3 (𝜑𝐹:𝐴𝐵)
7 tsmsval.a . . 3 (𝜑𝐴𝑊)
81fvexi 6889 . . . 4 𝐵 ∈ V
98a1i 11 . . 3 (𝜑𝐵 ∈ V)
10 fex2 7930 . . 3 ((𝐹:𝐴𝐵𝐴𝑊𝐵 ∈ V) → 𝐹 ∈ V)
116, 7, 9, 10syl3anc 1373 . 2 (𝜑𝐹 ∈ V)
126fdmd 6715 . 2 (𝜑 → dom 𝐹 = 𝐴)
131, 2, 3, 4, 5, 11, 12tsmsval2 24066 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575  cmpt 5201  ran crn 5655  cres 5656  wf 6526  cfv 6530  (class class class)co 7403  Fincfn 8957  Basecbs 17226  TopOpenctopn 17433   Σg cgsu 17452  filGencfg 21302   fLimf cflf 23871   tsums ctsu 24062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-tsms 24063
This theorem is referenced by:  eltsms  24069  haustsms  24072  tsmscls  24074  tsmsmhm  24082  tsmsadd  24083
  Copyright terms: Public domain W3C validator