| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version | ||
| Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
| 4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
| 5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 8 | 1 | fvexi 6842 | . . . 4 ⊢ 𝐵 ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | fex2 7872 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 12 | 6 | fdmd 6667 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 24051 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4549 ↦ cmpt 5174 ran crn 5620 ↾ cres 5621 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 Fincfn 8875 Basecbs 17126 TopOpenctopn 17331 Σg cgsu 17350 filGencfg 21286 fLimf cflf 23856 tsums ctsu 24047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-tsms 24048 |
| This theorem is referenced by: eltsms 24054 haustsms 24057 tsmscls 24059 tsmsmhm 24067 tsmsadd 24068 |
| Copyright terms: Public domain | W3C validator |