![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version |
Description: Definition of the topological group sum(s) of a collection πΉ(π₯) of values in the group with index set π΄. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmsval.b | β’ π΅ = (BaseβπΊ) |
tsmsval.j | β’ π½ = (TopOpenβπΊ) |
tsmsval.s | β’ π = (π« π΄ β© Fin) |
tsmsval.l | β’ πΏ = ran (π§ β π β¦ {π¦ β π β£ π§ β π¦}) |
tsmsval.g | β’ (π β πΊ β π) |
tsmsval.a | β’ (π β π΄ β π) |
tsmsval.f | β’ (π β πΉ:π΄βΆπ΅) |
Ref | Expression |
---|---|
tsmsval | β’ (π β (πΊ tsums πΉ) = ((π½ fLimf (πfilGenπΏ))β(π¦ β π β¦ (πΊ Ξ£g (πΉ βΎ π¦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsval.b | . 2 β’ π΅ = (BaseβπΊ) | |
2 | tsmsval.j | . 2 β’ π½ = (TopOpenβπΊ) | |
3 | tsmsval.s | . 2 β’ π = (π« π΄ β© Fin) | |
4 | tsmsval.l | . 2 β’ πΏ = ran (π§ β π β¦ {π¦ β π β£ π§ β π¦}) | |
5 | tsmsval.g | . 2 β’ (π β πΊ β π) | |
6 | tsmsval.f | . . 3 β’ (π β πΉ:π΄βΆπ΅) | |
7 | tsmsval.a | . . 3 β’ (π β π΄ β π) | |
8 | 1 | fvexi 6905 | . . . 4 β’ π΅ β V |
9 | 8 | a1i 11 | . . 3 β’ (π β π΅ β V) |
10 | fex2 7927 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ π΄ β π β§ π΅ β V) β πΉ β V) | |
11 | 6, 7, 9, 10 | syl3anc 1370 | . 2 β’ (π β πΉ β V) |
12 | 6 | fdmd 6728 | . 2 β’ (π β dom πΉ = π΄) |
13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 23855 | 1 β’ (π β (πΊ tsums πΉ) = ((π½ fLimf (πfilGenπΏ))β(π¦ β π β¦ (πΊ Ξ£g (πΉ βΎ π¦))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 Vcvv 3473 β© cin 3947 β wss 3948 π« cpw 4602 β¦ cmpt 5231 ran crn 5677 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7412 Fincfn 8942 Basecbs 17149 TopOpenctopn 17372 Ξ£g cgsu 17391 filGencfg 21134 fLimf cflf 23660 tsums ctsu 23851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-tsms 23852 |
This theorem is referenced by: eltsms 23858 haustsms 23861 tsmscls 23863 tsmsmhm 23871 tsmsadd 23872 |
Copyright terms: Public domain | W3C validator |