![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version |
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | 1 | fvexi 6460 | . . . 4 ⊢ 𝐵 ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | fex2 7400 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
11 | 6, 7, 9, 10 | syl3anc 1439 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
12 | 6 | fdmd 6300 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 22341 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 ∩ cin 3791 ⊆ wss 3792 𝒫 cpw 4379 ↦ cmpt 4965 ran crn 5356 ↾ cres 5357 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 Basecbs 16255 TopOpenctopn 16468 Σg cgsu 16487 filGencfg 20131 fLimf cflf 22147 tsums ctsu 22337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-tsms 22338 |
This theorem is referenced by: eltsms 22344 haustsms 22347 tsmscls 22349 tsmsmhm 22357 tsmsadd 22358 |
Copyright terms: Public domain | W3C validator |