MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval Structured version   Visualization version   GIF version

Theorem tsmsval 24052
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval.a (𝜑𝐴𝑊)
tsmsval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tsmsval (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval
StepHypRef Expression
1 tsmsval.b . 2 𝐵 = (Base‘𝐺)
2 tsmsval.j . 2 𝐽 = (TopOpen‘𝐺)
3 tsmsval.s . 2 𝑆 = (𝒫 𝐴 ∩ Fin)
4 tsmsval.l . 2 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 tsmsval.g . 2 (𝜑𝐺𝑉)
6 tsmsval.f . . 3 (𝜑𝐹:𝐴𝐵)
7 tsmsval.a . . 3 (𝜑𝐴𝑊)
81fvexi 6842 . . . 4 𝐵 ∈ V
98a1i 11 . . 3 (𝜑𝐵 ∈ V)
10 fex2 7872 . . 3 ((𝐹:𝐴𝐵𝐴𝑊𝐵 ∈ V) → 𝐹 ∈ V)
116, 7, 9, 10syl3anc 1373 . 2 (𝜑𝐹 ∈ V)
126fdmd 6667 . 2 (𝜑 → dom 𝐹 = 𝐴)
131, 2, 3, 4, 5, 11, 12tsmsval2 24051 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4549  cmpt 5174  ran crn 5620  cres 5621  wf 6483  cfv 6487  (class class class)co 7352  Fincfn 8875  Basecbs 17126  TopOpenctopn 17331   Σg cgsu 17350  filGencfg 21286   fLimf cflf 23856   tsums ctsu 24047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-tsms 24048
This theorem is referenced by:  eltsms  24054  haustsms  24057  tsmscls  24059  tsmsmhm  24067  tsmsadd  24068
  Copyright terms: Public domain W3C validator