| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version | ||
| Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
| 4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
| 5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 8 | 1 | fvexi 6840 | . . . 4 ⊢ 𝐵 ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | fex2 7876 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 12 | 6 | fdmd 6666 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 24033 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ↦ cmpt 5176 ran crn 5624 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 TopOpenctopn 17343 Σg cgsu 17362 filGencfg 21268 fLimf cflf 23838 tsums ctsu 24029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-tsms 24030 |
| This theorem is referenced by: eltsms 24036 haustsms 24039 tsmscls 24041 tsmsmhm 24049 tsmsadd 24050 |
| Copyright terms: Public domain | W3C validator |