Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version |
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | 1 | fvexi 6788 | . . . 4 ⊢ 𝐵 ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | fex2 7780 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
11 | 6, 7, 9, 10 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
12 | 6 | fdmd 6611 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 23281 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ↦ cmpt 5157 ran crn 5590 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 TopOpenctopn 17132 Σg cgsu 17151 filGencfg 20586 fLimf cflf 23086 tsums ctsu 23277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-tsms 23278 |
This theorem is referenced by: eltsms 23284 haustsms 23287 tsmscls 23289 tsmsmhm 23297 tsmsadd 23298 |
Copyright terms: Public domain | W3C validator |