MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval Structured version   Visualization version   GIF version

Theorem tsmsval 22342
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b 𝐵 = (Base‘𝐺)
tsmsval.j 𝐽 = (TopOpen‘𝐺)
tsmsval.s 𝑆 = (𝒫 𝐴 ∩ Fin)
tsmsval.l 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
tsmsval.g (𝜑𝐺𝑉)
tsmsval.a (𝜑𝐴𝑊)
tsmsval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tsmsval (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑆(𝑧)   𝐽(𝑦,𝑧)   𝐿(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem tsmsval
StepHypRef Expression
1 tsmsval.b . 2 𝐵 = (Base‘𝐺)
2 tsmsval.j . 2 𝐽 = (TopOpen‘𝐺)
3 tsmsval.s . 2 𝑆 = (𝒫 𝐴 ∩ Fin)
4 tsmsval.l . 2 𝐿 = ran (𝑧𝑆 ↦ {𝑦𝑆𝑧𝑦})
5 tsmsval.g . 2 (𝜑𝐺𝑉)
6 tsmsval.f . . 3 (𝜑𝐹:𝐴𝐵)
7 tsmsval.a . . 3 (𝜑𝐴𝑊)
81fvexi 6460 . . . 4 𝐵 ∈ V
98a1i 11 . . 3 (𝜑𝐵 ∈ V)
10 fex2 7400 . . 3 ((𝐹:𝐴𝐵𝐴𝑊𝐵 ∈ V) → 𝐹 ∈ V)
116, 7, 9, 10syl3anc 1439 . 2 (𝜑𝐹 ∈ V)
126fdmd 6300 . 2 (𝜑 → dom 𝐹 = 𝐴)
131, 2, 3, 4, 5, 11, 12tsmsval2 22341 1 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦𝑆 ↦ (𝐺 Σg (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  cin 3791  wss 3792  𝒫 cpw 4379  cmpt 4965  ran crn 5356  cres 5357  wf 6131  cfv 6135  (class class class)co 6922  Fincfn 8241  Basecbs 16255  TopOpenctopn 16468   Σg cgsu 16487  filGencfg 20131   fLimf cflf 22147   tsums ctsu 22337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-tsms 22338
This theorem is referenced by:  eltsms  22344  haustsms  22347  tsmscls  22349  tsmsmhm  22357  tsmsadd  22358
  Copyright terms: Public domain W3C validator