![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version |
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | 1 | fvexi 6934 | . . . 4 ⊢ 𝐵 ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
10 | fex2 7974 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
11 | 6, 7, 9, 10 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
12 | 6 | fdmd 6757 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 24159 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 TopOpenctopn 17481 Σg cgsu 17500 filGencfg 21376 fLimf cflf 23964 tsums ctsu 24155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-tsms 24156 |
This theorem is referenced by: eltsms 24162 haustsms 24165 tsmscls 24167 tsmsmhm 24175 tsmsadd 24176 |
Copyright terms: Public domain | W3C validator |