| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version | ||
| Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
| tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
| tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
| 4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
| 5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 8 | 1 | fvexi 6831 | . . . 4 ⊢ 𝐵 ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | fex2 7861 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 12 | 6 | fdmd 6657 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | 1, 2, 3, 4, 5, 11, 12 | tsmsval2 24038 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {crab 3393 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 𝒫 cpw 4548 ↦ cmpt 5170 ran crn 5615 ↾ cres 5616 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 Basecbs 17112 TopOpenctopn 17317 Σg cgsu 17336 filGencfg 21273 fLimf cflf 23843 tsums ctsu 24034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-tsms 24035 |
| This theorem is referenced by: eltsms 24041 haustsms 24044 tsmscls 24046 tsmsmhm 24054 tsmsadd 24055 |
| Copyright terms: Public domain | W3C validator |