Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsmscls | Structured version Visualization version GIF version |
Description: One half of tgptsmscls 22903, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
Ref | Expression |
---|---|
tsmscls.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmscls.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tsmscls.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmscls.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmscls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmscls.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
tsmscls.x | ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
Ref | Expression |
---|---|
tsmscls | ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmscls.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
2 | tsmscls.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tsmscls.j | . . . . . 6 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | eqid 2738 | . . . . . 6 ⊢ (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin) | |
5 | eqid 2738 | . . . . . 6 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) | |
6 | tsmscls.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
7 | tsmscls.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | tsmscls.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tsmsval 22884 | . . . . 5 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
10 | 2, 3 | istps 21687 | . . . . . . 7 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
11 | 6, 10 | sylib 221 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
12 | eqid 2738 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) | |
13 | 4, 12, 5, 7 | tsmsfbas 22881 | . . . . . . 7 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin))) |
14 | fgcl 22631 | . . . . . . 7 ⊢ (ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
16 | tsmscls.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
17 | 2, 4, 16, 7, 8 | tsmslem1 22882 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝐵) |
18 | 17 | fmpttd 6891 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):(𝒫 𝐴 ∩ Fin)⟶𝐵) |
19 | flfval 22743 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))):(𝒫 𝐴 ∩ Fin)⟶𝐵) → ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) | |
20 | 11, 15, 18, 19 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) |
21 | 9, 20 | eqtrd 2773 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) |
22 | 1, 21 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) |
23 | flimsncls 22739 | . . 3 ⊢ (𝑋 ∈ (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦})))) → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐽 fLim ((𝐵 FilMap (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))‘((𝒫 𝐴 ∩ Fin)filGenran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑥 ⊆ 𝑦}))))) |
25 | 24, 21 | sseqtrrd 3918 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 {crab 3057 ∩ cin 3842 ⊆ wss 3843 𝒫 cpw 4488 {csn 4516 ↦ cmpt 5110 ran crn 5526 ↾ cres 5527 ⟶wf 6335 ‘cfv 6339 (class class class)co 7172 Fincfn 8557 Basecbs 16588 TopOpenctopn 16800 Σg cgsu 16819 CMndccmn 19026 fBascfbas 20207 filGencfg 20208 TopOnctopon 21663 TopSpctps 21685 clsccl 21771 Filcfil 22598 FilMap cfm 22686 fLim cflim 22687 fLimf cflf 22688 tsums ctsu 22879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-supp 7859 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-map 8441 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-fsupp 8909 df-oi 9049 df-card 9443 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-fzo 13127 df-seq 13463 df-hash 13785 df-0g 16820 df-gsum 16821 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-cntz 18567 df-cmn 19028 df-fbas 20216 df-fg 20217 df-top 21647 df-topon 21664 df-topsp 21686 df-cld 21772 df-ntr 21773 df-cls 21774 df-nei 21851 df-fil 22599 df-flim 22692 df-flf 22693 df-tsms 22880 |
This theorem is referenced by: tgptsmscls 22903 |
Copyright terms: Public domain | W3C validator |