MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsmhm Structured version   Visualization version   GIF version

Theorem tsmsmhm 22460
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsmhm.b 𝐵 = (Base‘𝐺)
tsmsmhm.j 𝐽 = (TopOpen‘𝐺)
tsmsmhm.k 𝐾 = (TopOpen‘𝐻)
tsmsmhm.1 (𝜑𝐺 ∈ CMnd)
tsmsmhm.2 (𝜑𝐺 ∈ TopSp)
tsmsmhm.3 (𝜑𝐻 ∈ CMnd)
tsmsmhm.4 (𝜑𝐻 ∈ TopSp)
tsmsmhm.5 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
tsmsmhm.6 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
tsmsmhm.a (𝜑𝐴𝑉)
tsmsmhm.f (𝜑𝐹:𝐴𝐵)
tsmsmhm.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsmhm (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))

Proof of Theorem tsmsmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsmhm.2 . . . 4 (𝜑𝐺 ∈ TopSp)
2 tsmsmhm.b . . . . 5 𝐵 = (Base‘𝐺)
3 tsmsmhm.j . . . . 5 𝐽 = (TopOpen‘𝐺)
42, 3istps 21249 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 210 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 eqid 2778 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
7 eqid 2778 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
8 eqid 2778 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
9 tsmsmhm.a . . . . 5 (𝜑𝐴𝑉)
106, 7, 8, 9tsmsfbas 22442 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
11 fgcl 22193 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
1210, 11syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
13 tsmsmhm.1 . . . . 5 (𝜑𝐺 ∈ CMnd)
14 tsmsmhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
152, 6, 13, 9, 14tsmslem1 22443 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
1615fmpttd 6704 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵)
17 tsmsmhm.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
182, 3, 6, 8, 1, 9, 14tsmsval 22445 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
1917, 18eleqtrd 2868 . . 3 (𝜑𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
20 tsmsmhm.6 . . . 4 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
212, 13, 1, 9, 14tsmscl 22449 . . . . . 6 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2221, 17sseldd 3861 . . . . 5 (𝜑𝑋𝐵)
23 toponuni 21229 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
245, 23syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
2522, 24eleqtrd 2868 . . . 4 (𝜑𝑋 𝐽)
26 eqid 2778 . . . . 5 𝐽 = 𝐽
2726cncnpi 21593 . . . 4 ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
2820, 25, 27syl2anc 576 . . 3 (𝜑𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
29 flfcnp 22319 . . 3 (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
305, 12, 16, 19, 28, 29syl32anc 1358 . 2 (𝜑 → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
31 eqid 2778 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 tsmsmhm.k . . . 4 𝐾 = (TopOpen‘𝐻)
33 tsmsmhm.3 . . . 4 (𝜑𝐻 ∈ CMnd)
34 tsmsmhm.4 . . . . . . 7 (𝜑𝐻 ∈ TopSp)
3531, 32istps 21249 . . . . . . 7 (𝐻 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐻)))
3634, 35sylib 210 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐻)))
37 cnf2 21564 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻))
385, 36, 20, 37syl3anc 1351 . . . . 5 (𝜑𝐶:𝐵⟶(Base‘𝐻))
39 fco 6363 . . . . 5 ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4038, 14, 39syl2anc 576 . . . 4 (𝜑 → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4131, 32, 6, 8, 33, 9, 40tsmsval 22445 . . 3 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
4238, 15cofmpt 6719 . . . . 5 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
43 resco 5944 . . . . . . . 8 ((𝐶𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹𝑧))
4443oveq2i 6989 . . . . . . 7 (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹𝑧)))
45 eqid 2778 . . . . . . . 8 (0g𝐺) = (0g𝐺)
4613adantr 473 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
4733adantr 473 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
48 cmnmnd 18684 . . . . . . . . 9 (𝐻 ∈ CMnd → 𝐻 ∈ Mnd)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd)
50 elinel2 4063 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5150adantl 474 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
52 tsmsmhm.5 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
5352adantr 473 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻))
54 elfpw 8623 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
5554simplbi 490 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
56 fssres 6375 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
5714, 55, 56syl2an 586 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
58 fvexd 6516 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
5957, 51, 58fdmfifsupp 8640 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
602, 45, 46, 49, 51, 53, 57, 59gsummhm 18814 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹𝑧))) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6144, 60syl5eq 2826 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6261mpteq2dva 5023 . . . . 5 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
6342, 62eqtr4d 2817 . . . 4 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))))
6463fveq2d 6505 . . 3 (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
6541, 64eqtr4d 2817 . 2 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
6630, 65eleqtrrd 2869 1 (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {crab 3092  Vcvv 3415  cin 3830  wss 3831  𝒫 cpw 4423   cuni 4713  cmpt 5009  ran crn 5409  cres 5410  ccom 5412  wf 6186  cfv 6190  (class class class)co 6978  Fincfn 8308  Basecbs 16342  TopOpenctopn 16554  0gc0g 16572   Σg cgsu 16573  Mndcmnd 17765   MndHom cmhm 17804  CMndccmn 18669  fBascfbas 20238  filGencfg 20239  TopOnctopon 21225  TopSpctps 21247   Cn ccn 21539   CnP ccnp 21540  Filcfil 22160   fLimf cflf 22250   tsums ctsu 22440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-hash 13509  df-0g 16574  df-gsum 16575  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-cntz 18221  df-cmn 18671  df-fbas 20247  df-fg 20248  df-top 21209  df-topon 21226  df-topsp 21248  df-ntr 21335  df-nei 21413  df-cn 21542  df-cnp 21543  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-tsms 22441
This theorem is referenced by:  tsmsinv  22462  esumcocn  30983
  Copyright terms: Public domain W3C validator