MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsmhm Structured version   Visualization version   GIF version

Theorem tsmsmhm 22748
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsmhm.b 𝐵 = (Base‘𝐺)
tsmsmhm.j 𝐽 = (TopOpen‘𝐺)
tsmsmhm.k 𝐾 = (TopOpen‘𝐻)
tsmsmhm.1 (𝜑𝐺 ∈ CMnd)
tsmsmhm.2 (𝜑𝐺 ∈ TopSp)
tsmsmhm.3 (𝜑𝐻 ∈ CMnd)
tsmsmhm.4 (𝜑𝐻 ∈ TopSp)
tsmsmhm.5 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
tsmsmhm.6 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
tsmsmhm.a (𝜑𝐴𝑉)
tsmsmhm.f (𝜑𝐹:𝐴𝐵)
tsmsmhm.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsmhm (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))

Proof of Theorem tsmsmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsmhm.2 . . . 4 (𝜑𝐺 ∈ TopSp)
2 tsmsmhm.b . . . . 5 𝐵 = (Base‘𝐺)
3 tsmsmhm.j . . . . 5 𝐽 = (TopOpen‘𝐺)
42, 3istps 21536 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 220 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 eqid 2821 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
7 eqid 2821 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
8 eqid 2821 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
9 tsmsmhm.a . . . . 5 (𝜑𝐴𝑉)
106, 7, 8, 9tsmsfbas 22730 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
11 fgcl 22480 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
1210, 11syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
13 tsmsmhm.1 . . . . 5 (𝜑𝐺 ∈ CMnd)
14 tsmsmhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
152, 6, 13, 9, 14tsmslem1 22731 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
1615fmpttd 6873 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵)
17 tsmsmhm.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
182, 3, 6, 8, 1, 9, 14tsmsval 22733 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
1917, 18eleqtrd 2915 . . 3 (𝜑𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
20 tsmsmhm.6 . . . 4 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
212, 13, 1, 9, 14tsmscl 22737 . . . . . 6 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2221, 17sseldd 3967 . . . . 5 (𝜑𝑋𝐵)
23 toponuni 21516 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
245, 23syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
2522, 24eleqtrd 2915 . . . 4 (𝜑𝑋 𝐽)
26 eqid 2821 . . . . 5 𝐽 = 𝐽
2726cncnpi 21880 . . . 4 ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
2820, 25, 27syl2anc 586 . . 3 (𝜑𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
29 flfcnp 22606 . . 3 (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
305, 12, 16, 19, 28, 29syl32anc 1374 . 2 (𝜑 → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
31 eqid 2821 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 tsmsmhm.k . . . 4 𝐾 = (TopOpen‘𝐻)
33 tsmsmhm.3 . . . 4 (𝜑𝐻 ∈ CMnd)
34 tsmsmhm.4 . . . . . . 7 (𝜑𝐻 ∈ TopSp)
3531, 32istps 21536 . . . . . . 7 (𝐻 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐻)))
3634, 35sylib 220 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐻)))
37 cnf2 21851 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻))
385, 36, 20, 37syl3anc 1367 . . . . 5 (𝜑𝐶:𝐵⟶(Base‘𝐻))
39 fco 6525 . . . . 5 ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4038, 14, 39syl2anc 586 . . . 4 (𝜑 → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4131, 32, 6, 8, 33, 9, 40tsmsval 22733 . . 3 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
4238, 15cofmpt 6888 . . . . 5 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
43 resco 6097 . . . . . . . 8 ((𝐶𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹𝑧))
4443oveq2i 7161 . . . . . . 7 (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹𝑧)))
45 eqid 2821 . . . . . . . 8 (0g𝐺) = (0g𝐺)
4613adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
4733adantr 483 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
48 cmnmnd 18916 . . . . . . . . 9 (𝐻 ∈ CMnd → 𝐻 ∈ Mnd)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd)
50 elinel2 4172 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5150adantl 484 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
52 tsmsmhm.5 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
5352adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻))
54 elfpw 8820 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
5554simplbi 500 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
56 fssres 6538 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
5714, 55, 56syl2an 597 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
58 fvexd 6679 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
5957, 51, 58fdmfifsupp 8837 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
602, 45, 46, 49, 51, 53, 57, 59gsummhm 19052 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹𝑧))) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6144, 60syl5eq 2868 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6261mpteq2dva 5153 . . . . 5 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
6342, 62eqtr4d 2859 . . . 4 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))))
6463fveq2d 6668 . . 3 (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
6541, 64eqtr4d 2859 . 2 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
6630, 65eleqtrrd 2916 1 (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cin 3934  wss 3935  𝒫 cpw 4538   cuni 4831  cmpt 5138  ran crn 5550  cres 5551  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  Basecbs 16477  TopOpenctopn 16689  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905   MndHom cmhm 17948  CMndccmn 18900  fBascfbas 20527  filGencfg 20528  TopOnctopon 21512  TopSpctps 21534   Cn ccn 21826   CnP ccnp 21827  Filcfil 22447   fLimf cflf 22537   tsums ctsu 22728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-cntz 18441  df-cmn 18902  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-topsp 21535  df-ntr 21622  df-nei 21700  df-cn 21829  df-cnp 21830  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-tsms 22729
This theorem is referenced by:  tsmsinv  22750  esumcocn  31334
  Copyright terms: Public domain W3C validator