MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsmhm Structured version   Visualization version   GIF version

Theorem tsmsmhm 24071
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsmhm.b 𝐵 = (Base‘𝐺)
tsmsmhm.j 𝐽 = (TopOpen‘𝐺)
tsmsmhm.k 𝐾 = (TopOpen‘𝐻)
tsmsmhm.1 (𝜑𝐺 ∈ CMnd)
tsmsmhm.2 (𝜑𝐺 ∈ TopSp)
tsmsmhm.3 (𝜑𝐻 ∈ CMnd)
tsmsmhm.4 (𝜑𝐻 ∈ TopSp)
tsmsmhm.5 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
tsmsmhm.6 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
tsmsmhm.a (𝜑𝐴𝑉)
tsmsmhm.f (𝜑𝐹:𝐴𝐵)
tsmsmhm.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsmhm (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))

Proof of Theorem tsmsmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsmhm.2 . . . 4 (𝜑𝐺 ∈ TopSp)
2 tsmsmhm.b . . . . 5 𝐵 = (Base‘𝐺)
3 tsmsmhm.j . . . . 5 𝐽 = (TopOpen‘𝐺)
42, 3istps 22859 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 eqid 2733 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
7 eqid 2733 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
8 eqid 2733 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
9 tsmsmhm.a . . . . 5 (𝜑𝐴𝑉)
106, 7, 8, 9tsmsfbas 24053 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
11 fgcl 23803 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
1210, 11syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
13 tsmsmhm.1 . . . . 5 (𝜑𝐺 ∈ CMnd)
14 tsmsmhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
152, 6, 13, 9, 14tsmslem1 24054 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
1615fmpttd 7057 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵)
17 tsmsmhm.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
182, 3, 6, 8, 1, 9, 14tsmsval 24056 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
1917, 18eleqtrd 2835 . . 3 (𝜑𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
20 tsmsmhm.6 . . . 4 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
212, 13, 1, 9, 14tsmscl 24060 . . . . . 6 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2221, 17sseldd 3932 . . . . 5 (𝜑𝑋𝐵)
23 toponuni 22839 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
245, 23syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
2522, 24eleqtrd 2835 . . . 4 (𝜑𝑋 𝐽)
26 eqid 2733 . . . . 5 𝐽 = 𝐽
2726cncnpi 23203 . . . 4 ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
2820, 25, 27syl2anc 584 . . 3 (𝜑𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
29 flfcnp 23929 . . 3 (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
305, 12, 16, 19, 28, 29syl32anc 1380 . 2 (𝜑 → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
31 eqid 2733 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 tsmsmhm.k . . . 4 𝐾 = (TopOpen‘𝐻)
33 tsmsmhm.3 . . . 4 (𝜑𝐻 ∈ CMnd)
34 tsmsmhm.4 . . . . . . 7 (𝜑𝐻 ∈ TopSp)
3531, 32istps 22859 . . . . . . 7 (𝐻 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐻)))
3634, 35sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐻)))
37 cnf2 23174 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻))
385, 36, 20, 37syl3anc 1373 . . . . 5 (𝜑𝐶:𝐵⟶(Base‘𝐻))
39 fco 6683 . . . . 5 ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4038, 14, 39syl2anc 584 . . . 4 (𝜑 → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4131, 32, 6, 8, 33, 9, 40tsmsval 24056 . . 3 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
4238, 15cofmpt 7074 . . . . 5 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
43 resco 6205 . . . . . . . 8 ((𝐶𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹𝑧))
4443oveq2i 7366 . . . . . . 7 (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹𝑧)))
45 eqid 2733 . . . . . . . 8 (0g𝐺) = (0g𝐺)
4613adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
4733adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
48 cmnmnd 19719 . . . . . . . . 9 (𝐻 ∈ CMnd → 𝐻 ∈ Mnd)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd)
50 elinel2 4153 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5150adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
52 tsmsmhm.5 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻))
54 elfpw 9248 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
5554simplbi 497 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
56 fssres 6697 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
5714, 55, 56syl2an 596 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
58 fvexd 6846 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
5957, 51, 58fdmfifsupp 9269 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
602, 45, 46, 49, 51, 53, 57, 59gsummhm 19860 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹𝑧))) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6144, 60eqtrid 2780 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6261mpteq2dva 5188 . . . . 5 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
6342, 62eqtr4d 2771 . . . 4 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))))
6463fveq2d 6835 . . 3 (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
6541, 64eqtr4d 2771 . 2 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
6630, 65eleqtrrd 2836 1 (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3397  Vcvv 3438  cin 3898  wss 3899  𝒫 cpw 4551   cuni 4860  cmpt 5176  ran crn 5622  cres 5623  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8878  Basecbs 17130  TopOpenctopn 17335  0gc0g 17353   Σg cgsu 17354  Mndcmnd 18652   MndHom cmhm 18699  CMndccmn 19702  fBascfbas 21289  filGencfg 21290  TopOnctopon 22835  TopSpctps 22857   Cn ccn 23149   CnP ccnp 23150  Filcfil 23770   fLimf cflf 23860   tsums ctsu 24051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-0g 17355  df-gsum 17356  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-cntz 19239  df-cmn 19704  df-fbas 21298  df-fg 21299  df-top 22819  df-topon 22836  df-topsp 22858  df-ntr 22945  df-nei 23023  df-cn 23152  df-cnp 23153  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-tsms 24052
This theorem is referenced by:  tsmsinv  24073  esumcocn  34104
  Copyright terms: Public domain W3C validator