Step | Hyp | Ref
| Expression |
1 | | tsmsmhm.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
2 | | tsmsmhm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
3 | | tsmsmhm.j |
. . . . 5
⊢ 𝐽 = (TopOpen‘𝐺) |
4 | 2, 3 | istps 21991 |
. . . 4
⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
5 | 1, 4 | sylib 217 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
6 | | eqid 2738 |
. . . . 5
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
7 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
8 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
9 | | tsmsmhm.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | 6, 7, 8, 9 | tsmsfbas 23187 |
. . . 4
⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin))) |
11 | | fgcl 22937 |
. . . 4
⊢ (ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫
𝐴 ∩ Fin)filGenran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
12 | 10, 11 | syl 17 |
. . 3
⊢ (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
13 | | tsmsmhm.1 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CMnd) |
14 | | tsmsmhm.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
15 | 2, 6, 13, 9, 14 | tsmslem1 23188 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝐵) |
16 | 15 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) |
17 | | tsmsmhm.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
18 | 2, 3, 6, 8, 1, 9, 14 | tsmsval 23190 |
. . . 4
⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
19 | 17, 18 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
20 | | tsmsmhm.6 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐾)) |
21 | 2, 13, 1, 9, 14 | tsmscl 23194 |
. . . . . 6
⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
22 | 21, 17 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
23 | | toponuni 21971 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
24 | 5, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
25 | 22, 24 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ∪ 𝐽) |
26 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
27 | 26 | cncnpi 22337 |
. . . 4
⊢ ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 ∈ ∪ 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋)) |
28 | 20, 25, 27 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋)) |
29 | | flfcnp 23063 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg
(𝐹 ↾ 𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶‘𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))))) |
30 | 5, 12, 16, 19, 28, 29 | syl32anc 1376 |
. 2
⊢ (𝜑 → (𝐶‘𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))))) |
31 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
32 | | tsmsmhm.k |
. . . 4
⊢ 𝐾 = (TopOpen‘𝐻) |
33 | | tsmsmhm.3 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ CMnd) |
34 | | tsmsmhm.4 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ TopSp) |
35 | 31, 32 | istps 21991 |
. . . . . . 7
⊢ (𝐻 ∈ TopSp ↔ 𝐾 ∈
(TopOn‘(Base‘𝐻))) |
36 | 34, 35 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘(Base‘𝐻))) |
37 | | cnf2 22308 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻)) |
38 | 5, 36, 20, 37 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 𝐶:𝐵⟶(Base‘𝐻)) |
39 | | fco 6608 |
. . . . 5
⊢ ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴⟶𝐵) → (𝐶 ∘ 𝐹):𝐴⟶(Base‘𝐻)) |
40 | 38, 14, 39 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐶 ∘ 𝐹):𝐴⟶(Base‘𝐻)) |
41 | 31, 32, 6, 8, 33, 9,
40 | tsmsval 23190 |
. . 3
⊢ (𝜑 → (𝐻 tsums (𝐶 ∘ 𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶 ∘ 𝐹) ↾ 𝑧))))) |
42 | 38, 15 | cofmpt 6986 |
. . . . 5
⊢ (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹 ↾ 𝑧))))) |
43 | | resco 6143 |
. . . . . . . 8
⊢ ((𝐶 ∘ 𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹 ↾ 𝑧)) |
44 | 43 | oveq2i 7266 |
. . . . . . 7
⊢ (𝐻 Σg
((𝐶 ∘ 𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹 ↾ 𝑧))) |
45 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
46 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd) |
47 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd) |
48 | | cmnmnd 19317 |
. . . . . . . . 9
⊢ (𝐻 ∈ CMnd → 𝐻 ∈ Mnd) |
49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd) |
50 | | elinel2 4126 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin) |
51 | 50 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin) |
52 | | tsmsmhm.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (𝐺 MndHom 𝐻)) |
53 | 52 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻)) |
54 | | elfpw 9051 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin)) |
55 | 54 | simplbi 497 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ⊆ 𝐴) |
56 | | fssres 6624 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ⊆ 𝐴) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
57 | 14, 55, 56 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
58 | | fvexd 6771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) →
(0g‘𝐺)
∈ V) |
59 | 57, 51, 58 | fdmfifsupp 9068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧) finSupp (0g‘𝐺)) |
60 | 2, 45, 46, 49, 51, 53, 57, 59 | gsummhm 19454 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹 ↾ 𝑧))) = (𝐶‘(𝐺 Σg (𝐹 ↾ 𝑧)))) |
61 | 44, 60 | eqtrid 2790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶 ∘ 𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹 ↾ 𝑧)))) |
62 | 61 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶 ∘ 𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹 ↾ 𝑧))))) |
63 | 42, 62 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶 ∘ 𝐹) ↾ 𝑧)))) |
64 | 63 | fveq2d 6760 |
. . 3
⊢ (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶 ∘ 𝐹) ↾ 𝑧))))) |
65 | 41, 64 | eqtr4d 2781 |
. 2
⊢ (𝜑 → (𝐻 tsums (𝐶 ∘ 𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧)))))) |
66 | 30, 65 | eleqtrrd 2842 |
1
⊢ (𝜑 → (𝐶‘𝑋) ∈ (𝐻 tsums (𝐶 ∘ 𝐹))) |