MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsmhm Structured version   Visualization version   GIF version

Theorem tsmsmhm 23205
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsmhm.b 𝐵 = (Base‘𝐺)
tsmsmhm.j 𝐽 = (TopOpen‘𝐺)
tsmsmhm.k 𝐾 = (TopOpen‘𝐻)
tsmsmhm.1 (𝜑𝐺 ∈ CMnd)
tsmsmhm.2 (𝜑𝐺 ∈ TopSp)
tsmsmhm.3 (𝜑𝐻 ∈ CMnd)
tsmsmhm.4 (𝜑𝐻 ∈ TopSp)
tsmsmhm.5 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
tsmsmhm.6 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
tsmsmhm.a (𝜑𝐴𝑉)
tsmsmhm.f (𝜑𝐹:𝐴𝐵)
tsmsmhm.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsmhm (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))

Proof of Theorem tsmsmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsmhm.2 . . . 4 (𝜑𝐺 ∈ TopSp)
2 tsmsmhm.b . . . . 5 𝐵 = (Base‘𝐺)
3 tsmsmhm.j . . . . 5 𝐽 = (TopOpen‘𝐺)
42, 3istps 21991 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 eqid 2738 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
7 eqid 2738 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
8 eqid 2738 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
9 tsmsmhm.a . . . . 5 (𝜑𝐴𝑉)
106, 7, 8, 9tsmsfbas 23187 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
11 fgcl 22937 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
1210, 11syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
13 tsmsmhm.1 . . . . 5 (𝜑𝐺 ∈ CMnd)
14 tsmsmhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
152, 6, 13, 9, 14tsmslem1 23188 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
1615fmpttd 6971 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵)
17 tsmsmhm.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
182, 3, 6, 8, 1, 9, 14tsmsval 23190 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
1917, 18eleqtrd 2841 . . 3 (𝜑𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
20 tsmsmhm.6 . . . 4 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
212, 13, 1, 9, 14tsmscl 23194 . . . . . 6 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2221, 17sseldd 3918 . . . . 5 (𝜑𝑋𝐵)
23 toponuni 21971 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
245, 23syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
2522, 24eleqtrd 2841 . . . 4 (𝜑𝑋 𝐽)
26 eqid 2738 . . . . 5 𝐽 = 𝐽
2726cncnpi 22337 . . . 4 ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
2820, 25, 27syl2anc 583 . . 3 (𝜑𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
29 flfcnp 23063 . . 3 (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
305, 12, 16, 19, 28, 29syl32anc 1376 . 2 (𝜑 → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
31 eqid 2738 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 tsmsmhm.k . . . 4 𝐾 = (TopOpen‘𝐻)
33 tsmsmhm.3 . . . 4 (𝜑𝐻 ∈ CMnd)
34 tsmsmhm.4 . . . . . . 7 (𝜑𝐻 ∈ TopSp)
3531, 32istps 21991 . . . . . . 7 (𝐻 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐻)))
3634, 35sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐻)))
37 cnf2 22308 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻))
385, 36, 20, 37syl3anc 1369 . . . . 5 (𝜑𝐶:𝐵⟶(Base‘𝐻))
39 fco 6608 . . . . 5 ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4038, 14, 39syl2anc 583 . . . 4 (𝜑 → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4131, 32, 6, 8, 33, 9, 40tsmsval 23190 . . 3 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
4238, 15cofmpt 6986 . . . . 5 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
43 resco 6143 . . . . . . . 8 ((𝐶𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹𝑧))
4443oveq2i 7266 . . . . . . 7 (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹𝑧)))
45 eqid 2738 . . . . . . . 8 (0g𝐺) = (0g𝐺)
4613adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
4733adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
48 cmnmnd 19317 . . . . . . . . 9 (𝐻 ∈ CMnd → 𝐻 ∈ Mnd)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd)
50 elinel2 4126 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5150adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
52 tsmsmhm.5 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻))
54 elfpw 9051 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
5554simplbi 497 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
56 fssres 6624 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
5714, 55, 56syl2an 595 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
58 fvexd 6771 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
5957, 51, 58fdmfifsupp 9068 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
602, 45, 46, 49, 51, 53, 57, 59gsummhm 19454 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹𝑧))) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6144, 60eqtrid 2790 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6261mpteq2dva 5170 . . . . 5 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
6342, 62eqtr4d 2781 . . . 4 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))))
6463fveq2d 6760 . . 3 (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
6541, 64eqtr4d 2781 . 2 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
6630, 65eleqtrrd 2842 1 (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cmpt 5153  ran crn 5581  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  TopOpenctopn 17049  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343  CMndccmn 19301  fBascfbas 20498  filGencfg 20499  TopOnctopon 21967  TopSpctps 21989   Cn ccn 22283   CnP ccnp 22284  Filcfil 22904   fLimf cflf 22994   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-ntr 22079  df-nei 22157  df-cn 22286  df-cnp 22287  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186
This theorem is referenced by:  tsmsinv  23207  esumcocn  31948
  Copyright terms: Public domain W3C validator