MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsmhm Structured version   Visualization version   GIF version

Theorem tsmsmhm 24169
Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsmhm.b 𝐵 = (Base‘𝐺)
tsmsmhm.j 𝐽 = (TopOpen‘𝐺)
tsmsmhm.k 𝐾 = (TopOpen‘𝐻)
tsmsmhm.1 (𝜑𝐺 ∈ CMnd)
tsmsmhm.2 (𝜑𝐺 ∈ TopSp)
tsmsmhm.3 (𝜑𝐻 ∈ CMnd)
tsmsmhm.4 (𝜑𝐻 ∈ TopSp)
tsmsmhm.5 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
tsmsmhm.6 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
tsmsmhm.a (𝜑𝐴𝑉)
tsmsmhm.f (𝜑𝐹:𝐴𝐵)
tsmsmhm.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
tsmsmhm (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))

Proof of Theorem tsmsmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsmhm.2 . . . 4 (𝜑𝐺 ∈ TopSp)
2 tsmsmhm.b . . . . 5 𝐵 = (Base‘𝐺)
3 tsmsmhm.j . . . . 5 𝐽 = (TopOpen‘𝐺)
42, 3istps 22955 . . . 4 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 eqid 2734 . . . . 5 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
7 eqid 2734 . . . . 5 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
8 eqid 2734 . . . . 5 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
9 tsmsmhm.a . . . . 5 (𝜑𝐴𝑉)
106, 7, 8, 9tsmsfbas 24151 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
11 fgcl 23901 . . . 4 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
1210, 11syl 17 . . 3 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
13 tsmsmhm.1 . . . . 5 (𝜑𝐺 ∈ CMnd)
14 tsmsmhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
152, 6, 13, 9, 14tsmslem1 24152 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
1615fmpttd 7134 . . 3 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵)
17 tsmsmhm.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
182, 3, 6, 8, 1, 9, 14tsmsval 24154 . . . 4 (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
1917, 18eleqtrd 2840 . . 3 (𝜑𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
20 tsmsmhm.6 . . . 4 (𝜑𝐶 ∈ (𝐽 Cn 𝐾))
212, 13, 1, 9, 14tsmscl 24158 . . . . . 6 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2221, 17sseldd 3995 . . . . 5 (𝜑𝑋𝐵)
23 toponuni 22935 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
245, 23syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
2522, 24eleqtrd 2840 . . . 4 (𝜑𝑋 𝐽)
26 eqid 2734 . . . . 5 𝐽 = 𝐽
2726cncnpi 23301 . . . 4 ((𝐶 ∈ (𝐽 Cn 𝐾) ∧ 𝑋 𝐽) → 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
2820, 25, 27syl2anc 584 . . 3 (𝜑𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))
29 flfcnp 24027 . . 3 (((𝐽 ∈ (TopOn‘𝐵) ∧ ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))):(𝒫 𝐴 ∩ Fin)⟶𝐵) ∧ (𝑋 ∈ ((𝐽 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) ∧ 𝐶 ∈ ((𝐽 CnP 𝐾)‘𝑋))) → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
305, 12, 16, 19, 28, 29syl32anc 1377 . 2 (𝜑 → (𝐶𝑋) ∈ ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
31 eqid 2734 . . . 4 (Base‘𝐻) = (Base‘𝐻)
32 tsmsmhm.k . . . 4 𝐾 = (TopOpen‘𝐻)
33 tsmsmhm.3 . . . 4 (𝜑𝐻 ∈ CMnd)
34 tsmsmhm.4 . . . . . . 7 (𝜑𝐻 ∈ TopSp)
3531, 32istps 22955 . . . . . . 7 (𝐻 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐻)))
3634, 35sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐻)))
37 cnf2 23272 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐶 ∈ (𝐽 Cn 𝐾)) → 𝐶:𝐵⟶(Base‘𝐻))
385, 36, 20, 37syl3anc 1370 . . . . 5 (𝜑𝐶:𝐵⟶(Base‘𝐻))
39 fco 6760 . . . . 5 ((𝐶:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4038, 14, 39syl2anc 584 . . . 4 (𝜑 → (𝐶𝐹):𝐴⟶(Base‘𝐻))
4131, 32, 6, 8, 33, 9, 40tsmsval 24154 . . 3 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
4238, 15cofmpt 7151 . . . . 5 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
43 resco 6271 . . . . . . . 8 ((𝐶𝐹) ↾ 𝑧) = (𝐶 ∘ (𝐹𝑧))
4443oveq2i 7441 . . . . . . 7 (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐻 Σg (𝐶 ∘ (𝐹𝑧)))
45 eqid 2734 . . . . . . . 8 (0g𝐺) = (0g𝐺)
4613adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
4733adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
48 cmnmnd 19829 . . . . . . . . 9 (𝐻 ∈ CMnd → 𝐻 ∈ Mnd)
4947, 48syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ Mnd)
50 elinel2 4211 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5150adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
52 tsmsmhm.5 . . . . . . . . 9 (𝜑𝐶 ∈ (𝐺 MndHom 𝐻))
5352adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 ∈ (𝐺 MndHom 𝐻))
54 elfpw 9391 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
5554simplbi 497 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
56 fssres 6774 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
5714, 55, 56syl2an 596 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
58 fvexd 6921 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
5957, 51, 58fdmfifsupp 9412 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
602, 45, 46, 49, 51, 53, 57, 59gsummhm 19970 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐶 ∘ (𝐹𝑧))) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6144, 60eqtrid 2786 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)) = (𝐶‘(𝐺 Σg (𝐹𝑧))))
6261mpteq2dva 5247 . . . . 5 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐶‘(𝐺 Σg (𝐹𝑧)))))
6342, 62eqtr4d 2777 . . . 4 (𝜑 → (𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧))))
6463fveq2d 6910 . . 3 (𝜑 → ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐻 Σg ((𝐶𝐹) ↾ 𝑧)))))
6541, 64eqtr4d 2777 . 2 (𝜑 → (𝐻 tsums (𝐶𝐹)) = ((𝐾 fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝐶 ∘ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧))))))
6630, 65eleqtrrd 2841 1 (𝜑 → (𝐶𝑋) ∈ (𝐻 tsums (𝐶𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  cin 3961  wss 3962  𝒫 cpw 4604   cuni 4911  cmpt 5230  ran crn 5689  cres 5690  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  Basecbs 17244  TopOpenctopn 17467  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759   MndHom cmhm 18806  CMndccmn 19812  fBascfbas 21369  filGencfg 21370  TopOnctopon 22931  TopSpctps 22953   Cn ccn 23247   CnP ccnp 23248  Filcfil 23868   fLimf cflf 23958   tsums ctsu 24149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-cntz 19347  df-cmn 19814  df-fbas 21378  df-fg 21379  df-top 22915  df-topon 22932  df-topsp 22954  df-ntr 23043  df-nei 23121  df-cn 23250  df-cnp 23251  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tsms 24150
This theorem is referenced by:  tsmsinv  24171  esumcocn  34060
  Copyright terms: Public domain W3C validator