MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isucn Structured version   Visualization version   GIF version

Theorem isucn 24181
Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
isucn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑦,𝐹   𝑈,𝑟,𝑠,𝑥,𝑦   𝑉,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥,𝑦   𝑌,𝑟,𝑠,𝑥
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem isucn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ucnval 24180 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
21eleq2d 2814 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))}))
3 fveq1 6825 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6825 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
53, 4breq12d 5108 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝑠(𝑓𝑦) ↔ (𝐹𝑥)𝑠(𝐹𝑦)))
65imbi2d 340 . . . . . . 7 (𝑓 = 𝐹 → ((𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
76ralbidv 3152 . . . . . 6 (𝑓 = 𝐹 → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
87rexralbidv 3195 . . . . 5 (𝑓 = 𝐹 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
98ralbidv 3152 . . . 4 (𝑓 = 𝐹 → (∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
109elrab 3650 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
112, 10bitrdi 287 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
12 elfvex 6862 . . . 4 (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 ∈ V)
13 elfvex 6862 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 elmapg 8773 . . . 4 ((𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1512, 13, 14syl2anr 597 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1615anbi1d 631 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
1711, 16bitrd 279 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  UnifOncust 24103   Cnucucn 24178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-ust 24104  df-ucn 24179
This theorem is referenced by:  isucn2  24182  ucnima  24184  iducn  24186  cstucnd  24187  ucncn  24188  fmucnd  24195  ucnextcn  24207
  Copyright terms: Public domain W3C validator