| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isucn | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| isucn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnval 24215 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | |
| 2 | 1 | eleq2d 2820 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))})) |
| 3 | fveq1 6875 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 4 | fveq1 6875 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 5 | 3, 4 | breq12d 5132 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝑠(𝑓‘𝑦) ↔ (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
| 6 | 5 | imbi2d 340 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
| 7 | 6 | ralbidv 3163 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
| 8 | 7 | rexralbidv 3207 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
| 9 | 8 | ralbidv 3163 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
| 10 | 9 | elrab 3671 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
| 11 | 2, 10 | bitrdi 287 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
| 12 | elfvex 6914 | . . . 4 ⊢ (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 ∈ V) | |
| 13 | elfvex 6914 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 14 | elmapg 8853 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
| 15 | 12, 13, 14 | syl2anr 597 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
| 16 | 15 | anbi1d 631 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
| 17 | 11, 16 | bitrd 279 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 UnifOncust 24138 Cnucucn 24213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-ust 24139 df-ucn 24214 |
| This theorem is referenced by: isucn2 24217 ucnima 24219 iducn 24221 cstucnd 24222 ucncn 24223 fmucnd 24230 ucnextcn 24242 |
| Copyright terms: Public domain | W3C validator |