MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isucn Structured version   Visualization version   GIF version

Theorem isucn 22887
Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
isucn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑦,𝐹   𝑈,𝑟,𝑠,𝑥,𝑦   𝑉,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥,𝑦   𝑌,𝑟,𝑠,𝑥
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem isucn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ucnval 22886 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
21eleq2d 2898 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))}))
3 fveq1 6669 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6669 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
53, 4breq12d 5079 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝑠(𝑓𝑦) ↔ (𝐹𝑥)𝑠(𝐹𝑦)))
65imbi2d 343 . . . . . . 7 (𝑓 = 𝐹 → ((𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
76ralbidv 3197 . . . . . 6 (𝑓 = 𝐹 → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
87rexralbidv 3301 . . . . 5 (𝑓 = 𝐹 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
98ralbidv 3197 . . . 4 (𝑓 = 𝐹 → (∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
109elrab 3680 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
112, 10syl6bb 289 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
12 elfvex 6703 . . . 4 (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 ∈ V)
13 elfvex 6703 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 elmapg 8419 . . . 4 ((𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1512, 13, 14syl2anr 598 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1615anbi1d 631 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
1711, 16bitrd 281 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  UnifOncust 22808   Cnucucn 22884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-ust 22809  df-ucn 22885
This theorem is referenced by:  isucn2  22888  ucnima  22890  iducn  22892  cstucnd  22893  ucncn  22894  fmucnd  22901  ucnextcn  22913
  Copyright terms: Public domain W3C validator