MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isucn Structured version   Visualization version   GIF version

Theorem isucn 23338
Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
isucn ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑦,𝐹   𝑈,𝑟,𝑠,𝑥,𝑦   𝑉,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥,𝑦   𝑌,𝑟,𝑠,𝑥
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem isucn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ucnval 23337 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
21eleq2d 2824 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))}))
3 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
53, 4breq12d 5083 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝑠(𝑓𝑦) ↔ (𝐹𝑥)𝑠(𝐹𝑦)))
65imbi2d 340 . . . . . . 7 (𝑓 = 𝐹 → ((𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
76ralbidv 3120 . . . . . 6 (𝑓 = 𝐹 → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
87rexralbidv 3229 . . . . 5 (𝑓 = 𝐹 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
98ralbidv 3120 . . . 4 (𝑓 = 𝐹 → (∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
109elrab 3617 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
112, 10bitrdi 286 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
12 elfvex 6789 . . . 4 (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 ∈ V)
13 elfvex 6789 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 elmapg 8586 . . . 4 ((𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1512, 13, 14syl2anr 596 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1615anbi1d 629 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
1711, 16bitrd 278 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  UnifOncust 23259   Cnucucn 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ust 23260  df-ucn 23336
This theorem is referenced by:  isucn2  23339  ucnima  23341  iducn  23343  cstucnd  23344  ucncn  23345  fmucnd  23352  ucnextcn  23364
  Copyright terms: Public domain W3C validator