Step | Hyp | Ref
| Expression |
1 | | ucnval 23774 |
. . . 4
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (π Cnuπ) = {π β (π βm π) β£ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦))}) |
2 | 1 | eleq2d 2820 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (πΉ β (π Cnuπ) β πΉ β {π β (π βm π) β£ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦))})) |
3 | | fveq1 6888 |
. . . . . . . . 9
β’ (π = πΉ β (πβπ₯) = (πΉβπ₯)) |
4 | | fveq1 6888 |
. . . . . . . . 9
β’ (π = πΉ β (πβπ¦) = (πΉβπ¦)) |
5 | 3, 4 | breq12d 5161 |
. . . . . . . 8
β’ (π = πΉ β ((πβπ₯)π (πβπ¦) β (πΉβπ₯)π (πΉβπ¦))) |
6 | 5 | imbi2d 341 |
. . . . . . 7
β’ (π = πΉ β ((π₯ππ¦ β (πβπ₯)π (πβπ¦)) β (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦)))) |
7 | 6 | ralbidv 3178 |
. . . . . 6
β’ (π = πΉ β (βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦)) β βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦)))) |
8 | 7 | rexralbidv 3221 |
. . . . 5
β’ (π = πΉ β (βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦)) β βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦)))) |
9 | 8 | ralbidv 3178 |
. . . 4
β’ (π = πΉ β (βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦)) β βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦)))) |
10 | 9 | elrab 3683 |
. . 3
β’ (πΉ β {π β (π βm π) β£ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πβπ₯)π (πβπ¦))} β (πΉ β (π βm π) β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦)))) |
11 | 2, 10 | bitrdi 287 |
. 2
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (πΉ β (π Cnuπ) β (πΉ β (π βm π) β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦))))) |
12 | | elfvex 6927 |
. . . 4
β’ (π β (UnifOnβπ) β π β V) |
13 | | elfvex 6927 |
. . . 4
β’ (π β (UnifOnβπ) β π β V) |
14 | | elmapg 8830 |
. . . 4
β’ ((π β V β§ π β V) β (πΉ β (π βm π) β πΉ:πβΆπ)) |
15 | 12, 13, 14 | syl2anr 598 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (πΉ β (π βm π) β πΉ:πβΆπ)) |
16 | 15 | anbi1d 631 |
. 2
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β ((πΉ β (π βm π) β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦))) β (πΉ:πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦))))) |
17 | 11, 16 | bitrd 279 |
1
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (πΉ β (π Cnuπ) β (πΉ:πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (πΉβπ₯)π (πΉβπ¦))))) |