Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobsiga Structured version   Visualization version   GIF version

Theorem domprobsiga 34087
Description: The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobsiga (𝑃 ∈ Prob β†’ dom 𝑃 ∈ βˆͺ ran sigAlgebra)

Proof of Theorem domprobsiga
StepHypRef Expression
1 domprobmeas 34086 . 2 (𝑃 ∈ Prob β†’ 𝑃 ∈ (measuresβ€˜dom 𝑃))
2 measbase 33872 . 2 (𝑃 ∈ (measuresβ€˜dom 𝑃) β†’ dom 𝑃 ∈ βˆͺ ran sigAlgebra)
31, 2syl 17 1 (𝑃 ∈ Prob β†’ dom 𝑃 ∈ βˆͺ ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  βˆͺ cuni 4903  dom cdm 5672  ran crn 5673  β€˜cfv 6542  sigAlgebracsiga 33783  measurescmeas 33870  Probcprb 34083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7418  df-esum 33703  df-meas 33871  df-prob 34084
This theorem is referenced by:  unveldomd  34091  nuleldmp  34093  probdif  34096  totprobd  34102  cndprobin  34110  cndprob01  34111  isrrvv  34119  0rrv  34127  rrvadd  34128  rrvmulc  34129  orrvcval4  34140  orrvcoel  34141  orrvccel  34142
  Copyright terms: Public domain W3C validator