Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobsiga Structured version   Visualization version   GIF version

Theorem domprobsiga 34443
Description: The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobsiga (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)

Proof of Theorem domprobsiga
StepHypRef Expression
1 domprobmeas 34442 . 2 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
2 measbase 34228 . 2 (𝑃 ∈ (measures‘dom 𝑃) → dom 𝑃 ran sigAlgebra)
31, 2syl 17 1 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   cuni 4883  dom cdm 5654  ran crn 5655  cfv 6531  sigAlgebracsiga 34139  measurescmeas 34226  Probcprb 34439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-esum 34059  df-meas 34227  df-prob 34440
This theorem is referenced by:  unveldomd  34447  nuleldmp  34449  probdif  34452  totprobd  34458  cndprobin  34466  cndprob01  34467  isrrvv  34475  0rrv  34483  rrvadd  34484  rrvmulc  34485  boolesineq  34487  orrvcval4  34497  orrvcoel  34498  orrvccel  34499
  Copyright terms: Public domain W3C validator