Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvclim1 Structured version   Visualization version   GIF version

Theorem dstfrvclim1 34491
Description: The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstfrv.3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
Assertion
Ref Expression
dstfrvclim1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dstfrvclim1
Dummy variables 𝑖 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 dstfrv.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
3 domprobmeas 34423 . . . . . 6 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
42, 3syl 17 . . . . 5 (𝜑𝑃 ∈ (measures‘dom 𝑃))
52adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑃 ∈ Prob)
6 dstfrv.2 . . . . . . . 8 (𝜑𝑋 ∈ (rRndVar‘𝑃))
76adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
8 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnred 12140 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℝ)
105, 7, 9orvclteel 34486 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝑋RV/𝑐𝑖) ∈ dom 𝑃)
1110fmpttd 7048 . . . . 5 (𝜑 → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)):ℕ⟶dom 𝑃)
122adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
136adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
14 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1514nnred 12140 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1614peano2nnd 12142 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
1716nnred 12140 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
1815lep1d 12053 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
1912, 13, 15, 17, 18orvclteinc 34489 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ⊆ (𝑋RV/𝑐 ≤ (𝑛 + 1)))
20 eqidd 2732 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))
21 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = 𝑛) → 𝑖 = 𝑛)
2221oveq2d 7362 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = 𝑛) → (𝑋RV/𝑐𝑖) = (𝑋RV/𝑐𝑛))
2312, 13, 15orvclteel 34486 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
2420, 22, 14, 23fvmptd 6936 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘𝑛) = (𝑋RV/𝑐𝑛))
25 simpr 484 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = (𝑛 + 1)) → 𝑖 = (𝑛 + 1))
2625oveq2d 7362 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = (𝑛 + 1)) → (𝑋RV/𝑐𝑖) = (𝑋RV/𝑐 ≤ (𝑛 + 1)))
2712, 13, 17orvclteel 34486 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐 ≤ (𝑛 + 1)) ∈ dom 𝑃)
2820, 26, 16, 27fvmptd 6936 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘(𝑛 + 1)) = (𝑋RV/𝑐 ≤ (𝑛 + 1)))
2919, 24, 283sstr4d 3985 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘𝑛) ⊆ ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘(𝑛 + 1)))
301, 4, 11, 29meascnbl 34232 . . . 4 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))(⇝𝑡‘(TopOpen‘(ℝ*𝑠s (0[,]+∞))))(𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))))
31 measfn 34217 . . . . . . . 8 (𝑃 ∈ (measures‘dom 𝑃) → 𝑃 Fn dom 𝑃)
32 dffn5 6880 . . . . . . . . 9 (𝑃 Fn dom 𝑃𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
3332biimpi 216 . . . . . . . 8 (𝑃 Fn dom 𝑃𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
344, 31, 333syl 18 . . . . . . 7 (𝜑𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
35 prob01 34426 . . . . . . . 8 ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃) → (𝑃𝑎) ∈ (0[,]1))
362, 35sylan 580 . . . . . . 7 ((𝜑𝑎 ∈ dom 𝑃) → (𝑃𝑎) ∈ (0[,]1))
3734, 36fmpt3d 7049 . . . . . 6 (𝜑𝑃:dom 𝑃⟶(0[,]1))
38 fco 6675 . . . . . 6 ((𝑃:dom 𝑃⟶(0[,]1) ∧ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)):ℕ⟶dom 𝑃) → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))):ℕ⟶(0[,]1))
3937, 11, 38syl2anc 584 . . . . 5 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))):ℕ⟶(0[,]1))
402, 6dstfrvunirn 34488 . . . . . . 7 (𝜑 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = dom 𝑃)
412unveldomd 34428 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4240, 41eqeltrd 2831 . . . . . 6 (𝜑 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) ∈ dom 𝑃)
43 prob01 34426 . . . . . 6 ((𝑃 ∈ Prob ∧ ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) ∈ dom 𝑃) → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ∈ (0[,]1))
442, 42, 43syl2anc 584 . . . . 5 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ∈ (0[,]1))
45 0xr 11159 . . . . . 6 0 ∈ ℝ*
46 pnfxr 11166 . . . . . 6 +∞ ∈ ℝ*
47 0le0 12226 . . . . . 6 0 ≤ 0
48 1re 11112 . . . . . . 7 1 ∈ ℝ
49 ltpnf 13019 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
5048, 49ax-mp 5 . . . . . 6 1 < +∞
51 iccssico 13318 . . . . . 6 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0[,]1) ⊆ (0[,)+∞))
5245, 46, 47, 50, 51mp4an 693 . . . . 5 (0[,]1) ⊆ (0[,)+∞)
531, 39, 44, 52lmlimxrge0 33961 . . . 4 (𝜑 → ((𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))(⇝𝑡‘(TopOpen‘(ℝ*𝑠s (0[,]+∞))))(𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ↔ (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ⇝ (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))))
5430, 53mpbid 232 . . 3 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ⇝ (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))))
55 eqidd 2732 . . . . 5 (𝜑 → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))
56 fveq2 6822 . . . . 5 (𝑎 = (𝑋RV/𝑐𝑖) → (𝑃𝑎) = (𝑃‘(𝑋RV/𝑐𝑖)))
5710, 55, 34, 56fmptco 7062 . . . 4 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑖 ∈ ℕ ↦ (𝑃‘(𝑋RV/𝑐𝑖))))
58 dstfrv.3 . . . . . . 7 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
5958adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
60 simpr 484 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
6160oveq2d 7362 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → (𝑋RV/𝑐𝑥) = (𝑋RV/𝑐𝑖))
6261fveq2d 6826 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → (𝑃‘(𝑋RV/𝑐𝑥)) = (𝑃‘(𝑋RV/𝑐𝑖)))
635, 10probvalrnd 34437 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝑃‘(𝑋RV/𝑐𝑖)) ∈ ℝ)
6459, 62, 9, 63fvmptd 6936 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = (𝑃‘(𝑋RV/𝑐𝑖)))
6564mpteq2dva 5182 . . . 4 (𝜑 → (𝑖 ∈ ℕ ↦ (𝐹𝑖)) = (𝑖 ∈ ℕ ↦ (𝑃‘(𝑋RV/𝑐𝑖))))
6657, 65eqtr4d 2769 . . 3 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑖 ∈ ℕ ↦ (𝐹𝑖)))
6740fveq2d 6826 . . . 4 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑃 dom 𝑃))
68 probtot 34425 . . . . 5 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
692, 68syl 17 . . . 4 (𝜑 → (𝑃 dom 𝑃) = 1)
7067, 69eqtrd 2766 . . 3 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = 1)
7154, 66, 703brtr3d 5120 . 2 (𝜑 → (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1)
72 1z 12502 . . 3 1 ∈ ℤ
73 reex 11097 . . . . 5 ℝ ∈ V
7473mptex 7157 . . . 4 (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))) ∈ V
7558, 74eqeltrdi 2839 . . 3 (𝜑𝐹 ∈ V)
76 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
77 eqid 2731 . . . 4 (𝑖 ∈ ℕ ↦ (𝐹𝑖)) = (𝑖 ∈ ℕ ↦ (𝐹𝑖))
7876, 77climmpt 15478 . . 3 ((1 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 1 ↔ (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1))
7972, 75, 78sylancr 587 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1))
8071, 79mpbird 257 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   cuni 4856   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  cz 12468  [,)cico 13247  [,]cicc 13248  cli 15391  s cress 17141  TopOpenctopn 17325  *𝑠cxrs 17404  𝑡clm 23141  measurescmeas 34208  Probcprb 34420  rRndVarcrrv 34453  RV/𝑐corvc 34469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20795  df-scaf 20796  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-lm 23144  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-tmd 23987  df-tgp 23988  df-tsms 24042  df-trg 24075  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-nrg 24500  df-nlm 24501  df-ii 24797  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-esum 34041  df-siga 34122  df-sigagen 34152  df-brsiga 34195  df-meas 34209  df-mbfm 34263  df-prob 34421  df-rrv 34454  df-orvc 34470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator