Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobtot Structured version   Visualization version   GIF version

Theorem cndprobtot 31701
 Description: The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobtot ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = 1)

Proof of Theorem cndprobtot
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝑃 ∈ Prob)
21unveldomd 31680 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → dom 𝑃 ∈ dom 𝑃)
3 simpr 488 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃)
4 cndprobval 31698 . . . 4 ((𝑃 ∈ Prob ∧ dom 𝑃 ∈ dom 𝑃𝐴 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = ((𝑃‘( dom 𝑃𝐴)) / (𝑃𝐴)))
51, 2, 3, 4syl3anc 1368 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = ((𝑃‘( dom 𝑃𝐴)) / (𝑃𝐴)))
653adant3 1129 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = ((𝑃‘( dom 𝑃𝐴)) / (𝑃𝐴)))
7 elssuni 4841 . . . . . 6 (𝐴 ∈ dom 𝑃𝐴 dom 𝑃)
873ad2ant2 1131 . . . . 5 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → 𝐴 dom 𝑃)
9 sseqin2 4167 . . . . 5 (𝐴 dom 𝑃 ↔ ( dom 𝑃𝐴) = 𝐴)
108, 9sylib 221 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ( dom 𝑃𝐴) = 𝐴)
1110fveq2d 6647 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃‘( dom 𝑃𝐴)) = (𝑃𝐴))
1211oveq1d 7145 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((𝑃‘( dom 𝑃𝐴)) / (𝑃𝐴)) = ((𝑃𝐴) / (𝑃𝐴)))
13 prob01 31678 . . . . 5 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃𝐴) ∈ (0[,]1))
14133adant3 1129 . . . 4 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ∈ (0[,]1))
15 elunitcn 12836 . . . 4 ((𝑃𝐴) ∈ (0[,]1) → (𝑃𝐴) ∈ ℂ)
1614, 15syl 17 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ∈ ℂ)
17 simp3 1135 . . 3 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → (𝑃𝐴) ≠ 0)
1816, 17dividd 11391 . 2 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((𝑃𝐴) / (𝑃𝐴)) = 1)
196, 12, 183eqtrd 2860 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃𝐴) ≠ 0) → ((cprob‘𝑃)‘⟨ dom 𝑃, 𝐴⟩) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007   ∩ cin 3909   ⊆ wss 3910  ⟨cop 4546  ∪ cuni 4811  dom cdm 5528  ‘cfv 6328  (class class class)co 7130  ℂcc 10512  0cc0 10514  1c1 10515   / cdiv 11274  [,]cicc 12719  Probcprb 31672  cprobccprob 31696 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-ac2 9862  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-acn 9347  df-ac 9519  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-ordt 16752  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-ps 17788  df-tsr 17789  df-plusf 17829  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-cntz 18425  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-subrg 19508  df-abv 19563  df-lmod 19611  df-scaf 19612  df-sra 19919  df-rgmod 19920  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-tmd 22655  df-tgp 22656  df-tsms 22710  df-trg 22743  df-xms 22905  df-ms 22906  df-tms 22907  df-nm 23167  df-ngp 23168  df-nrg 23170  df-nlm 23171  df-ii 23460  df-cncf 23461  df-limc 24447  df-dv 24448  df-log 25126  df-esum 31294  df-siga 31375  df-meas 31462  df-prob 31673  df-cndprob 31697 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator