Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  up1st2nd2 Structured version   Visualization version   GIF version

Theorem up1st2nd2 48943
Description: Rewrite the universal property predicate with separated parts. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypothesis
Ref Expression
up1st2nd2.1 (𝜑𝑋 ∈ (𝐹(𝐷UP𝐸)𝑊))
Assertion
Ref Expression
up1st2nd2 (𝜑 → (1st𝑋)(𝐹(𝐷UP𝐸)𝑊)(2nd𝑋))

Proof of Theorem up1st2nd2
StepHypRef Expression
1 relup 48938 . 2 Rel (𝐹(𝐷UP𝐸)𝑊)
2 up1st2nd2.1 . 2 (𝜑𝑋 ∈ (𝐹(𝐷UP𝐸)𝑊))
3 1st2ndbr 8035 . 2 ((Rel (𝐹(𝐷UP𝐸)𝑊) ∧ 𝑋 ∈ (𝐹(𝐷UP𝐸)𝑊)) → (1st𝑋)(𝐹(𝐷UP𝐸)𝑊)(2nd𝑋))
41, 2, 3sylancr 587 1 (𝜑 → (1st𝑋)(𝐹(𝐷UP𝐸)𝑊)(2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5116  Rel wrel 5656  cfv 6527  (class class class)co 7399  1st c1st 7980  2nd c2nd 7981  UPcup 48929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-func 17856  df-up 48930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator