Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uprcl2 Structured version   Visualization version   GIF version

Theorem uprcl2 49220
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypothesis
Ref Expression
uprcl2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
uprcl2 (𝜑𝐹(𝐷 Func 𝐸)𝐺)

Proof of Theorem uprcl2
StepHypRef Expression
1 uprcl2.x . 2 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
2 df-br 5092 . . 3 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
32biimpi 216 . 2 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 → ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
4 eqid 2731 . . . 4 (Base‘𝐸) = (Base‘𝐸)
54uprcl 49215 . . 3 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
65simpld 494 . 2 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
7 df-br 5092 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
87biimpri 228 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → 𝐹(𝐷 Func 𝐸)𝐺)
91, 3, 6, 84syl 19 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117   Func cfunc 17758   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-up 49205
This theorem is referenced by:  uprcl4  49222  uprcl5  49223  uobrcl  49224  isup2  49225  upeu3  49226  upeu4  49227  uptposlem  49228  oppcuprcl2  49233  uptri  49245  isinito2  49530  isinito3  49531
  Copyright terms: Public domain W3C validator