Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uprcl2 Structured version   Visualization version   GIF version

Theorem uprcl2 49175
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypothesis
Ref Expression
uprcl2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
uprcl2 (𝜑𝐹(𝐷 Func 𝐸)𝐺)

Proof of Theorem uprcl2
StepHypRef Expression
1 uprcl2.x . 2 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
2 df-br 5096 . . 3 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
32biimpi 216 . 2 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 → ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
4 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
54uprcl 49170 . . 3 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
65simpld 494 . 2 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
7 df-br 5096 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
87biimpri 228 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → 𝐹(𝐷 Func 𝐸)𝐺)
91, 3, 6, 84syl 19 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138   Func cfunc 17779   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-func 17783  df-up 49160
This theorem is referenced by:  uprcl4  49177  uprcl5  49178  uobrcl  49179  isup2  49180  upeu3  49181  upeu4  49182  uptposlem  49183  oppcuprcl2  49188  uptri  49200  isinito2  49485  isinito3  49486
  Copyright terms: Public domain W3C validator