Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uprcl2 Structured version   Visualization version   GIF version

Theorem uprcl2 48900
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypothesis
Ref Expression
uprcl2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
Assertion
Ref Expression
uprcl2 (𝜑𝐹(𝐷 Func 𝐸)𝐺)

Proof of Theorem uprcl2
StepHypRef Expression
1 uprcl2.x . 2 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
2 df-br 5126 . . 3 (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊))
32biimpi 216 . 2 (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 → ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊))
4 eqid 2734 . . . 4 (Base‘𝐸) = (Base‘𝐸)
54uprcl 48899 . . 3 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) → (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
65simpld 494 . 2 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊) → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
7 df-br 5126 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
87biimpri 228 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → 𝐹(𝐷 Func 𝐸)𝐺)
91, 3, 6, 84syl 19 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cop 4614   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230   Func cfunc 17875  UPcup 48889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17879  df-up 48890
This theorem is referenced by:  uprcl4  48902  uprcl5  48903  isup2  48904  upeu3  48905  upeu4  48906
  Copyright terms: Public domain W3C validator