![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl2 | Structured version Visualization version GIF version |
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
Ref | Expression |
---|---|
uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
Ref | Expression |
---|---|
uprcl2 | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uprcl2.x | . 2 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) | |
2 | df-br 5152 | . . 3 ⊢ (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)) | |
3 | 2 | biimpi 216 | . 2 ⊢ (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 → 〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)) |
4 | eqid 2737 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
5 | 4 | uprcl 48860 | . . 3 ⊢ (〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊) → (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸))) |
6 | 5 | simpld 494 | . 2 ⊢ (〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊) → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
7 | df-br 5152 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
8 | 7 | biimpri 228 | . 2 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → 𝐹(𝐷 Func 𝐸)𝐺) |
9 | 1, 3, 6, 8 | 4syl 19 | 1 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4640 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Func cfunc 17914 UPcup 48851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-func 17918 df-up 48852 |
This theorem is referenced by: uprcl4 48863 uprcl5 48864 isup2 48865 upeu3 48866 upeu4 48867 |
Copyright terms: Public domain | W3C validator |