Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uprcl2 Structured version   Visualization version   GIF version

Theorem uprcl2 49096
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypothesis
Ref Expression
uprcl2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
Assertion
Ref Expression
uprcl2 (𝜑𝐹(𝐷 Func 𝐸)𝐺)

Proof of Theorem uprcl2
StepHypRef Expression
1 uprcl2.x . 2 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀)
2 df-br 5116 . . 3 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 ↔ ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
32biimpi 216 . 2 (𝑋(⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊)𝑀 → ⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊))
4 eqid 2730 . . . 4 (Base‘𝐸) = (Base‘𝐸)
54uprcl 49091 . . 3 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ (Base‘𝐸)))
65simpld 494 . 2 (⟨𝑋, 𝑀⟩ ∈ (⟨𝐹, 𝐺⟩(𝐷 UP 𝐸)𝑊) → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
7 df-br 5116 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
87biimpri 228 . 2 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → 𝐹(𝐷 Func 𝐸)𝐺)
91, 3, 6, 84syl 19 1 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4603   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185   Func cfunc 17822   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-func 17826  df-up 49082
This theorem is referenced by:  uprcl4  49098  uprcl5  49099  uobrcl  49100  isup2  49101  upeu3  49102  upeu4  49103  uptposlem  49104  oppcuprcl2  49109  uptri  49121  isinito2  49377  isinito3  49378
  Copyright terms: Public domain W3C validator