Step | Hyp | Ref
| Expression |
1 | | eulerpathpr.v |
. . . 4
β’ π = (VtxβπΊ) |
2 | | eqid 2732 |
. . . 4
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
3 | | simpl 483 |
. . . 4
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β πΊ β UPGraph) |
4 | | upgruhgr 28351 |
. . . . . 6
β’ (πΊ β UPGraph β πΊ β
UHGraph) |
5 | 2 | uhgrfun 28315 |
. . . . . 6
β’ (πΊ β UHGraph β Fun
(iEdgβπΊ)) |
6 | 4, 5 | syl 17 |
. . . . 5
β’ (πΊ β UPGraph β Fun
(iEdgβπΊ)) |
7 | 6 | adantr 481 |
. . . 4
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β Fun (iEdgβπΊ)) |
8 | | simpr 485 |
. . . 4
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β πΉ(EulerPathsβπΊ)π) |
9 | 1, 2, 3, 7, 8 | eupth2 29481 |
. . 3
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β {π₯ β π β£ Β¬ 2 β₯
((VtxDegβπΊ)βπ₯)} = if((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))})) |
10 | 9 | fveq2d 6892 |
. 2
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β (β―β{π₯ β π β£ Β¬ 2 β₯
((VtxDegβπΊ)βπ₯)}) = (β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}))) |
11 | | fveq2 6888 |
. . . 4
β’ (β
= if((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}) β (β―ββ
) =
(β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}))) |
12 | 11 | eleq1d 2818 |
. . 3
β’ (β
= if((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}) β ((β―ββ
) β
{0, 2} β (β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))})) β {0, 2})) |
13 | | fveq2 6888 |
. . . 4
β’ ({(πβ0), (πβ(β―βπΉ))} = if((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}) β (β―β{(πβ0), (πβ(β―βπΉ))}) = (β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}))) |
14 | 13 | eleq1d 2818 |
. . 3
β’ ({(πβ0), (πβ(β―βπΉ))} = if((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))}) β ((β―β{(πβ0), (πβ(β―βπΉ))}) β {0, 2} β
(β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))})) β {0, 2})) |
15 | | hash0 14323 |
. . . . 5
β’
(β―ββ
) = 0 |
16 | | c0ex 11204 |
. . . . . 6
β’ 0 β
V |
17 | 16 | prid1 4765 |
. . . . 5
β’ 0 β
{0, 2} |
18 | 15, 17 | eqeltri 2829 |
. . . 4
β’
(β―ββ
) β {0, 2} |
19 | 18 | a1i 11 |
. . 3
β’ (((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β§ (πβ0) = (πβ(β―βπΉ))) β (β―ββ
) β
{0, 2}) |
20 | | simpr 485 |
. . . . . 6
β’ (((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β§ Β¬ (πβ0) = (πβ(β―βπΉ))) β Β¬ (πβ0) = (πβ(β―βπΉ))) |
21 | 20 | neqned 2947 |
. . . . 5
β’ (((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β§ Β¬ (πβ0) = (πβ(β―βπΉ))) β (πβ0) β (πβ(β―βπΉ))) |
22 | | fvex 6901 |
. . . . . 6
β’ (πβ0) β
V |
23 | | fvex 6901 |
. . . . . 6
β’ (πβ(β―βπΉ)) β V |
24 | | hashprg 14351 |
. . . . . 6
β’ (((πβ0) β V β§ (πβ(β―βπΉ)) β V) β ((πβ0) β (πβ(β―βπΉ)) β (β―β{(πβ0), (πβ(β―βπΉ))}) = 2)) |
25 | 22, 23, 24 | mp2an 690 |
. . . . 5
β’ ((πβ0) β (πβ(β―βπΉ)) β (β―β{(πβ0), (πβ(β―βπΉ))}) = 2) |
26 | 21, 25 | sylib 217 |
. . . 4
β’ (((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β§ Β¬ (πβ0) = (πβ(β―βπΉ))) β (β―β{(πβ0), (πβ(β―βπΉ))}) = 2) |
27 | | 2ex 12285 |
. . . . 5
β’ 2 β
V |
28 | 27 | prid2 4766 |
. . . 4
β’ 2 β
{0, 2} |
29 | 26, 28 | eqeltrdi 2841 |
. . 3
β’ (((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β§ Β¬ (πβ0) = (πβ(β―βπΉ))) β (β―β{(πβ0), (πβ(β―βπΉ))}) β {0, 2}) |
30 | 12, 14, 19, 29 | ifbothda 4565 |
. 2
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β (β―βif((πβ0) = (πβ(β―βπΉ)), β
, {(πβ0), (πβ(β―βπΉ))})) β {0, 2}) |
31 | 10, 30 | eqeltrd 2833 |
1
β’ ((πΊ β UPGraph β§ πΉ(EulerPathsβπΊ)π) β (β―β{π₯ β π β£ Β¬ 2 β₯
((VtxDegβπΊ)βπ₯)}) β {0, 2}) |