| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eulerpathpr | Structured version Visualization version GIF version | ||
| Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| eulerpathpr | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpathpr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph) | |
| 4 | upgruhgr 29073 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 5 | 2 | uhgrfun 29037 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺)) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 9 | 1, 2, 3, 7, 8 | eupth2 30209 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
| 10 | 9 | fveq2d 6821 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) |
| 11 | fveq2 6817 | . . . 4 ⊢ (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘∅) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) | |
| 12 | 11 | eleq1d 2814 | . . 3 ⊢ (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘∅) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})) |
| 13 | fveq2 6817 | . . . 4 ⊢ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) | |
| 14 | 13 | eleq1d 2814 | . . 3 ⊢ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})) |
| 15 | hash0 14266 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 16 | c0ex 11098 | . . . . . 6 ⊢ 0 ∈ V | |
| 17 | 16 | prid1 4713 | . . . . 5 ⊢ 0 ∈ {0, 2} |
| 18 | 15, 17 | eqeltri 2825 | . . . 4 ⊢ (♯‘∅) ∈ {0, 2} |
| 19 | 18 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘∅) ∈ {0, 2}) |
| 20 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) | |
| 21 | 20 | neqned 2933 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
| 22 | fvex 6830 | . . . . . 6 ⊢ (𝑃‘0) ∈ V | |
| 23 | fvex 6830 | . . . . . 6 ⊢ (𝑃‘(♯‘𝐹)) ∈ V | |
| 24 | hashprg 14294 | . . . . . 6 ⊢ (((𝑃‘0) ∈ V ∧ (𝑃‘(♯‘𝐹)) ∈ V) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2) |
| 26 | 21, 25 | sylib 218 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2) |
| 27 | 2ex 12194 | . . . . 5 ⊢ 2 ∈ V | |
| 28 | 27 | prid2 4714 | . . . 4 ⊢ 2 ∈ {0, 2} |
| 29 | 26, 28 | eqeltrdi 2837 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2}) |
| 30 | 12, 14, 19, 29 | ifbothda 4512 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}) |
| 31 | 10, 30 | eqeltrd 2829 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 {crab 3393 Vcvv 3434 ∅c0 4281 ifcif 4473 {cpr 4576 class class class wbr 5089 Fun wfun 6471 ‘cfv 6477 0cc0 10998 2c2 12172 ♯chash 14229 ∥ cdvds 16155 Vtxcvtx 28967 iEdgciedg 28968 UHGraphcuhgr 29027 UPGraphcupgr 29051 VtxDegcvtxdg 29437 EulerPathsceupth 30167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-rp 12883 df-xadd 13004 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-word 14413 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-dvds 16156 df-vtx 28969 df-iedg 28970 df-edg 29019 df-uhgr 29029 df-ushgr 29030 df-upgr 29053 df-uspgr 29121 df-vtxdg 29438 df-wlks 29571 df-trls 29662 df-eupth 30168 |
| This theorem is referenced by: eulerpath 30211 |
| Copyright terms: Public domain | W3C validator |