Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerpathpr Structured version   Visualization version   GIF version

Theorem eulerpathpr 27613
 Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypothesis
Ref Expression
eulerpathpr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
eulerpathpr ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝑥,𝑉

Proof of Theorem eulerpathpr
StepHypRef Expression
1 eulerpathpr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2825 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 simpl 476 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph)
4 upgruhgr 26407 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
52uhgrfun 26371 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
64, 5syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
76adantr 474 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺))
8 simpr 479 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃)
91, 2, 3, 7, 8eupth2 27612 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
109fveq2d 6441 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
11 fveq2 6437 . . . 4 (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘∅) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
1211eleq1d 2891 . . 3 (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘∅) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}))
13 fveq2 6437 . . . 4 ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
1413eleq1d 2891 . . 3 ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}))
15 hash0 13455 . . . . 5 (♯‘∅) = 0
16 c0ex 10357 . . . . . 6 0 ∈ V
1716prid1 4517 . . . . 5 0 ∈ {0, 2}
1815, 17eqeltri 2902 . . . 4 (♯‘∅) ∈ {0, 2}
1918a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘∅) ∈ {0, 2})
20 simpr 479 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))
2120neqned 3006 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
22 fvex 6450 . . . . . 6 (𝑃‘0) ∈ V
23 fvex 6450 . . . . . 6 (𝑃‘(♯‘𝐹)) ∈ V
24 hashprg 13479 . . . . . 6 (((𝑃‘0) ∈ V ∧ (𝑃‘(♯‘𝐹)) ∈ V) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2))
2522, 23, 24mp2an 683 . . . . 5 ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)
2621, 25sylib 210 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)
27 2ex 11435 . . . . 5 2 ∈ V
2827prid2 4518 . . . 4 2 ∈ {0, 2}
2926, 28syl6eqel 2914 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2})
3012, 14, 19, 29ifbothda 4345 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})
3110, 30eqeltrd 2906 1 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  {crab 3121  Vcvv 3414  ∅c0 4146  ifcif 4308  {cpr 4401   class class class wbr 4875  Fun wfun 6121  ‘cfv 6127  0cc0 10259  2c2 11413  ♯chash 13417   ∥ cdvds 15364  Vtxcvtx 26301  iEdgciedg 26302  UHGraphcuhgr 26361  UPGraphcupgr 26385  VtxDegcvtxdg 26770  EulerPathsceupth 27569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ifp 1090  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-rp 12120  df-xadd 12240  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-word 13582  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-dvds 15365  df-vtx 26303  df-iedg 26304  df-edg 26353  df-uhgr 26363  df-ushgr 26364  df-upgr 26387  df-uspgr 26456  df-vtxdg 26771  df-wlks 26904  df-trls 27000  df-eupth 27570 This theorem is referenced by:  eulerpath  27614
 Copyright terms: Public domain W3C validator