MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerpathpr Structured version   Visualization version   GIF version

Theorem eulerpathpr 28600
Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypothesis
Ref Expression
eulerpathpr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
eulerpathpr ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝑥,𝑉

Proof of Theorem eulerpathpr
StepHypRef Expression
1 eulerpathpr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 simpl 483 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph)
4 upgruhgr 27470 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
52uhgrfun 27434 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
64, 5syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
76adantr 481 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺))
8 simpr 485 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃)
91, 2, 3, 7, 8eupth2 28599 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))
109fveq2d 6775 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
11 fveq2 6771 . . . 4 (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘∅) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
1211eleq1d 2825 . . 3 (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘∅) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}))
13 fveq2 6771 . . . 4 ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})))
1413eleq1d 2825 . . 3 ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}))
15 hash0 14080 . . . . 5 (♯‘∅) = 0
16 c0ex 10970 . . . . . 6 0 ∈ V
1716prid1 4704 . . . . 5 0 ∈ {0, 2}
1815, 17eqeltri 2837 . . . 4 (♯‘∅) ∈ {0, 2}
1918a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘∅) ∈ {0, 2})
20 simpr 485 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))
2120neqned 2952 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
22 fvex 6784 . . . . . 6 (𝑃‘0) ∈ V
23 fvex 6784 . . . . . 6 (𝑃‘(♯‘𝐹)) ∈ V
24 hashprg 14108 . . . . . 6 (((𝑃‘0) ∈ V ∧ (𝑃‘(♯‘𝐹)) ∈ V) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2))
2522, 23, 24mp2an 689 . . . . 5 ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)
2621, 25sylib 217 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)
27 2ex 12050 . . . . 5 2 ∈ V
2827prid2 4705 . . . 4 2 ∈ {0, 2}
2926, 28eqeltrdi 2849 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2})
3012, 14, 19, 29ifbothda 4503 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})
3110, 30eqeltrd 2841 1 ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  {crab 3070  Vcvv 3431  c0 4262  ifcif 4465  {cpr 4569   class class class wbr 5079  Fun wfun 6426  cfv 6432  0cc0 10872  2c2 12028  chash 14042  cdvds 15961  Vtxcvtx 27364  iEdgciedg 27365  UHGraphcuhgr 27424  UPGraphcupgr 27448  VtxDegcvtxdg 27830  EulerPathsceupth 28557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-rp 12730  df-xadd 12848  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-word 14216  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-vtx 27366  df-iedg 27367  df-edg 27416  df-uhgr 27426  df-ushgr 27427  df-upgr 27450  df-uspgr 27518  df-vtxdg 27831  df-wlks 27964  df-trls 28057  df-eupth 28558
This theorem is referenced by:  eulerpath  28601
  Copyright terms: Public domain W3C validator