Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eulerpathpr | Structured version Visualization version GIF version |
Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
eulerpathpr | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpathpr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph) | |
4 | upgruhgr 27375 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
5 | 2 | uhgrfun 27339 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺)) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺)) |
8 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃) | |
9 | 1, 2, 3, 7, 8 | eupth2 28504 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
10 | 9 | fveq2d 6760 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) |
11 | fveq2 6756 | . . . 4 ⊢ (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘∅) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) | |
12 | 11 | eleq1d 2823 | . . 3 ⊢ (∅ = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘∅) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})) |
13 | fveq2 6756 | . . . 4 ⊢ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}))) | |
14 | 13 | eleq1d 2823 | . . 3 ⊢ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ((♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2} ↔ (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2})) |
15 | hash0 14010 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
17 | 16 | prid1 4695 | . . . . 5 ⊢ 0 ∈ {0, 2} |
18 | 15, 17 | eqeltri 2835 | . . . 4 ⊢ (♯‘∅) ∈ {0, 2} |
19 | 18 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘∅) ∈ {0, 2}) |
20 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) | |
21 | 20 | neqned 2949 | . . . . 5 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
22 | fvex 6769 | . . . . . 6 ⊢ (𝑃‘0) ∈ V | |
23 | fvex 6769 | . . . . . 6 ⊢ (𝑃‘(♯‘𝐹)) ∈ V | |
24 | hashprg 14038 | . . . . . 6 ⊢ (((𝑃‘0) ∈ V ∧ (𝑃‘(♯‘𝐹)) ∈ V) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2)) | |
25 | 22, 23, 24 | mp2an 688 | . . . . 5 ⊢ ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2) |
26 | 21, 25 | sylib 217 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) = 2) |
27 | 2ex 11980 | . . . . 5 ⊢ 2 ∈ V | |
28 | 27 | prid2 4696 | . . . 4 ⊢ 2 ∈ {0, 2} |
29 | 26, 28 | eqeltrdi 2847 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) ∧ ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘{(𝑃‘0), (𝑃‘(♯‘𝐹))}) ∈ {0, 2}) |
30 | 12, 14, 19, 29 | ifbothda 4494 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) ∈ {0, 2}) |
31 | 10, 30 | eqeltrd 2839 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ∅c0 4253 ifcif 4456 {cpr 4560 class class class wbr 5070 Fun wfun 6412 ‘cfv 6418 0cc0 10802 2c2 11958 ♯chash 13972 ∥ cdvds 15891 Vtxcvtx 27269 iEdgciedg 27270 UHGraphcuhgr 27329 UPGraphcupgr 27353 VtxDegcvtxdg 27735 EulerPathsceupth 28462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-uspgr 27423 df-vtxdg 27736 df-wlks 27869 df-trls 27962 df-eupth 28463 |
This theorem is referenced by: eulerpath 28506 |
Copyright terms: Public domain | W3C validator |