MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrbi Structured version   Visualization version   GIF version

Theorem umgrbi 26880
Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.)
Hypotheses
Ref Expression
umgrbi.x 𝑋𝑉
umgrbi.y 𝑌𝑉
umgrbi.n 𝑋𝑌
Assertion
Ref Expression
umgrbi {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌

Proof of Theorem umgrbi
StepHypRef Expression
1 umgrbi.x . . . 4 𝑋𝑉
2 umgrbi.y . . . 4 𝑌𝑉
3 prssi 4747 . . . 4 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
41, 2, 3mp2an 690 . . 3 {𝑋, 𝑌} ⊆ 𝑉
5 prex 5324 . . . 4 {𝑋, 𝑌} ∈ V
65elpw 4545 . . 3 ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉)
74, 6mpbir 233 . 2 {𝑋, 𝑌} ∈ 𝒫 𝑉
8 umgrbi.n . . . 4 𝑋𝑌
9 hashprg 13750 . . . 4 ((𝑋𝑉𝑌𝑉) → (𝑋𝑌 ↔ (♯‘{𝑋, 𝑌}) = 2))
108, 9mpbii 235 . . 3 ((𝑋𝑉𝑌𝑉) → (♯‘{𝑋, 𝑌}) = 2)
111, 2, 10mp2an 690 . 2 (♯‘{𝑋, 𝑌}) = 2
12 fveqeq2 6673 . . 3 (𝑥 = {𝑋, 𝑌} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑋, 𝑌}) = 2))
1312elrab 3679 . 2 ({𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ (♯‘{𝑋, 𝑌}) = 2))
147, 11, 13mpbir2an 709 1 {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  wss 3935  𝒫 cpw 4538  {cpr 4562  cfv 6349  2c2 11686  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  konigsbergiedgw  28021
  Copyright terms: Public domain W3C validator