Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrbi | Structured version Visualization version GIF version |
Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
Ref | Expression |
---|---|
umgrbi.x | ⊢ 𝑋 ∈ 𝑉 |
umgrbi.y | ⊢ 𝑌 ∈ 𝑉 |
umgrbi.n | ⊢ 𝑋 ≠ 𝑌 |
Ref | Expression |
---|---|
umgrbi | ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrbi.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
2 | umgrbi.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
3 | prssi 4712 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ {𝑋, 𝑌} ⊆ 𝑉 |
5 | prex 5302 | . . . 4 ⊢ {𝑋, 𝑌} ∈ V | |
6 | 5 | elpw 4499 | . . 3 ⊢ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉) |
7 | 4, 6 | mpbir 234 | . 2 ⊢ {𝑋, 𝑌} ∈ 𝒫 𝑉 |
8 | umgrbi.n | . . . 4 ⊢ 𝑋 ≠ 𝑌 | |
9 | hashprg 13799 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ≠ 𝑌 ↔ (♯‘{𝑋, 𝑌}) = 2)) | |
10 | 8, 9 | mpbii 236 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (♯‘{𝑋, 𝑌}) = 2) |
11 | 1, 2, 10 | mp2an 692 | . 2 ⊢ (♯‘{𝑋, 𝑌}) = 2 |
12 | fveqeq2 6668 | . . 3 ⊢ (𝑥 = {𝑋, 𝑌} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑋, 𝑌}) = 2)) | |
13 | 12 | elrab 3603 | . 2 ⊢ ({𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ (♯‘{𝑋, 𝑌}) = 2)) |
14 | 7, 11, 13 | mpbir2an 711 | 1 ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 {crab 3075 ⊆ wss 3859 𝒫 cpw 4495 {cpr 4525 ‘cfv 6336 2c2 11722 ♯chash 13733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-hash 13734 |
This theorem is referenced by: konigsbergiedgw 28125 |
Copyright terms: Public domain | W3C validator |