| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgruhgr | Structured version Visualization version GIF version | ||
| Description: A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgruhgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr 29163 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29080 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 UHGraphcuhgr 29034 UPGraphcupgr 29058 USGraphcusgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-2 12188 df-uhgr 29036 df-upgr 29060 df-uspgr 29128 df-usgr 29129 |
| This theorem is referenced by: usgredg2vtxeuALT 29200 usgr0vb 29215 usgr1vr 29233 subusgr 29267 usgrspan 29273 usgr1v0e 29304 fusgrfisbase 29306 cusgrsize 29433 vtxdusgr0edgnel 29474 usgrvd00 29514 usgr0edg0rusgr 29554 rgrusgrprc 29568 usgrwwlks2on 29936 frgr0v 30242 2pthfrgr 30264 isubgrusgr 47971 usgrgrtrirex 48049 isubgr3stgrlem6 48070 isubgr3stgrlem7 48071 isubgr3stgrlem8 48072 clnbgr3stgrgrlim 48118 clnbgr3stgrgrlic 48119 usgrexmpl12ngric 48137 usgrexmpl12ngrlic 48138 |
| Copyright terms: Public domain | W3C validator |