| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgruhgr | Structured version Visualization version GIF version | ||
| Description: A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgruhgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr 29202 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29119 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 UHGraphcuhgr 29073 UPGraphcupgr 29097 USGraphcusgr 29166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-i2m1 11223 ax-1ne0 11224 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-2 12329 df-uhgr 29075 df-upgr 29099 df-uspgr 29167 df-usgr 29168 |
| This theorem is referenced by: usgredg2vtxeuALT 29239 usgr0vb 29254 usgr1vr 29272 subusgr 29306 usgrspan 29312 usgr1v0e 29343 fusgrfisbase 29345 cusgrsize 29472 vtxdusgr0edgnel 29513 usgrvd00 29553 usgr0edg0rusgr 29593 rgrusgrprc 29607 frgr0v 30281 2pthfrgr 30303 isubgrusgr 47858 usgrgrtrirex 47917 isubgr3stgrlem6 47938 isubgr3stgrlem7 47939 isubgr3stgrlem8 47940 clnbgr3stgrgrlic 47979 usgrexmpl12ngric 47997 usgrexmpl12ngrlic 47998 |
| Copyright terms: Public domain | W3C validator |