MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruhgr Structured version   Visualization version   GIF version

Theorem usgruhgr 29120
Description: A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.)
Assertion
Ref Expression
usgruhgr (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)

Proof of Theorem usgruhgr
StepHypRef Expression
1 usgrupgr 29119 . 2 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 upgruhgr 29036 . 2 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
31, 2syl 17 1 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  UHGraphcuhgr 28990  UPGraphcupgr 29014  USGraphcusgr 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-2 12256  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-usgr 29085
This theorem is referenced by:  usgredg2vtxeuALT  29156  usgr0vb  29171  usgr1vr  29189  subusgr  29223  usgrspan  29229  usgr1v0e  29260  fusgrfisbase  29262  cusgrsize  29389  vtxdusgr0edgnel  29430  usgrvd00  29470  usgr0edg0rusgr  29510  rgrusgrprc  29524  frgr0v  30198  2pthfrgr  30220  isubgrusgr  47876  usgrgrtrirex  47953  isubgr3stgrlem6  47974  isubgr3stgrlem7  47975  isubgr3stgrlem8  47976  clnbgr3stgrgrlic  48015  usgrexmpl12ngric  48033  usgrexmpl12ngrlic  48034
  Copyright terms: Public domain W3C validator