| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgruhgr | Structured version Visualization version GIF version | ||
| Description: A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgruhgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr 29119 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29036 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 UHGraphcuhgr 28990 UPGraphcupgr 29014 USGraphcusgr 29083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-2 12256 df-uhgr 28992 df-upgr 29016 df-uspgr 29084 df-usgr 29085 |
| This theorem is referenced by: usgredg2vtxeuALT 29156 usgr0vb 29171 usgr1vr 29189 subusgr 29223 usgrspan 29229 usgr1v0e 29260 fusgrfisbase 29262 cusgrsize 29389 vtxdusgr0edgnel 29430 usgrvd00 29470 usgr0edg0rusgr 29510 rgrusgrprc 29524 frgr0v 30198 2pthfrgr 30220 isubgrusgr 47876 usgrgrtrirex 47953 isubgr3stgrlem6 47974 isubgr3stgrlem7 47975 isubgr3stgrlem8 47976 clnbgr3stgrgrlic 48015 usgrexmpl12ngric 48033 usgrexmpl12ngrlic 48034 |
| Copyright terms: Public domain | W3C validator |