| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgruhgr | Structured version Visualization version GIF version | ||
| Description: A simple graph is an undirected hypergraph. (Contributed by AV, 9-Feb-2018.) (Revised by AV, 15-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgruhgr | ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr 29164 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 2 | upgruhgr 29081 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 UHGraphcuhgr 29035 UPGraphcupgr 29059 USGraphcusgr 29128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-2 12303 df-uhgr 29037 df-upgr 29061 df-uspgr 29129 df-usgr 29130 |
| This theorem is referenced by: usgredg2vtxeuALT 29201 usgr0vb 29216 usgr1vr 29234 subusgr 29268 usgrspan 29274 usgr1v0e 29305 fusgrfisbase 29307 cusgrsize 29434 vtxdusgr0edgnel 29475 usgrvd00 29515 usgr0edg0rusgr 29555 rgrusgrprc 29569 frgr0v 30243 2pthfrgr 30265 isubgrusgr 47885 usgrgrtrirex 47962 isubgr3stgrlem6 47983 isubgr3stgrlem7 47984 isubgr3stgrlem8 47985 clnbgr3stgrgrlic 48024 usgrexmpl12ngric 48042 usgrexmpl12ngrlic 48043 |
| Copyright terms: Public domain | W3C validator |