MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvvcl2 Structured version   Visualization version   GIF version

Theorem uvcvvcl2 21678
Description: A unit vector coordinate is a ring element. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvvcl2.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvvcl2.b 𝐵 = (Base‘𝑅)
uvcvvcl2.r (𝜑𝑅 ∈ Ring)
uvcvvcl2.i (𝜑𝐼𝑊)
uvcvvcl2.j (𝜑𝐽𝐼)
uvcvvcl2.k (𝜑𝐾𝐼)
Assertion
Ref Expression
uvcvvcl2 (𝜑 → ((𝑈𝐽)‘𝐾) ∈ 𝐵)

Proof of Theorem uvcvvcl2
StepHypRef Expression
1 uvcvvcl2.r . . 3 (𝜑𝑅 ∈ Ring)
2 uvcvvcl2.i . . 3 (𝜑𝐼𝑊)
3 uvcvvcl2.j . . 3 (𝜑𝐽𝐼)
4 uvcvvcl2.k . . 3 (𝜑𝐾𝐼)
5 uvcvvcl2.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
6 eqid 2726 . . . 4 (1r𝑅) = (1r𝑅)
7 eqid 2726 . . . 4 (0g𝑅) = (0g𝑅)
85, 6, 7uvcvval 21676 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), (0g𝑅)))
91, 2, 3, 4, 8syl31anc 1370 . 2 (𝜑 → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), (0g𝑅)))
10 uvcvvcl2.b . . . . 5 𝐵 = (Base‘𝑅)
1110, 6ringidcl 20162 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
1210, 7ring0cl 20163 . . . 4 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
1311, 12ifcld 4569 . . 3 (𝑅 ∈ Ring → if(𝐾 = 𝐽, (1r𝑅), (0g𝑅)) ∈ 𝐵)
141, 13syl 17 . 2 (𝜑 → if(𝐾 = 𝐽, (1r𝑅), (0g𝑅)) ∈ 𝐵)
159, 14eqeltrd 2827 1 (𝜑 → ((𝑈𝐽)‘𝐾) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ifcif 4523  cfv 6536  (class class class)co 7404  Basecbs 17150  0gc0g 17391  1rcur 20083  Ringcrg 20135   unitVec cuvc 21672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-plusg 17216  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-grp 18863  df-mgp 20037  df-ur 20084  df-ring 20137  df-uvc 21673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator