![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpoidval.1 | ⊢ 𝑋 = ran 𝐺 |
grpoidval.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
grpoidcl | ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoidval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpoidval.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidval 30316 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
4 | 1 | grpoideu 30312 | . . 3 ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
5 | riotacl 7388 | . . 3 ⊢ (∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐺 ∈ GrpOp → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) |
7 | 3, 6 | eqeltrd 2829 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∃!wreu 3370 ran crn 5673 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 GrpOpcgr 30292 GIdcgi 30293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-riota 7370 df-ov 7417 df-grpo 30296 df-gid 30297 |
This theorem is referenced by: grpoid 30323 vczcl 30375 nvzcl 30437 ghomidOLD 37356 grpokerinj 37360 rngo0cl 37386 rngolz 37389 rngorz 37390 gidsn 37419 keridl 37499 |
Copyright terms: Public domain | W3C validator |