| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpoidval.1 | ⊢ 𝑋 = ran 𝐺 |
| grpoidval.2 | ⊢ 𝑈 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| grpoidcl | ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoidval.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
| 3 | 1, 2 | grpoidval 30497 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
| 4 | 1 | grpoideu 30493 | . . 3 ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
| 5 | riotacl 7328 | . . 3 ⊢ (∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐺 ∈ GrpOp → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) |
| 7 | 3, 6 | eqeltrd 2833 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 ran crn 5622 ‘cfv 6488 ℩crio 7310 (class class class)co 7354 GrpOpcgr 30473 GIdcgi 30474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-riota 7311 df-ov 7357 df-grpo 30477 df-gid 30478 |
| This theorem is referenced by: grpoid 30504 vczcl 30556 nvzcl 30618 ghomidOLD 37952 grpokerinj 37956 rngo0cl 37982 rngolz 37985 rngorz 37986 gidsn 38015 keridl 38095 |
| Copyright terms: Public domain | W3C validator |