![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpoidval.1 | ⊢ 𝑋 = ran 𝐺 |
grpoidval.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
grpoidcl | ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoidval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpoidval.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidval 30542 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
4 | 1 | grpoideu 30538 | . . 3 ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
5 | riotacl 7405 | . . 3 ⊢ (∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐺 ∈ GrpOp → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋) |
7 | 3, 6 | eqeltrd 2839 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃!wreu 3376 ran crn 5690 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 GrpOpcgr 30518 GIdcgi 30519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-grpo 30522 df-gid 30523 |
This theorem is referenced by: grpoid 30549 vczcl 30601 nvzcl 30663 ghomidOLD 37876 grpokerinj 37880 rngo0cl 37906 rngolz 37909 rngorz 37910 gidsn 37939 keridl 38019 |
Copyright terms: Public domain | W3C validator |