MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidcl Structured version   Visualization version   GIF version

Theorem grpoidcl 30317
Description: The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoidcl (𝐺 ∈ GrpOp → 𝑈𝑋)

Proof of Theorem grpoidcl
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . 3 𝑋 = ran 𝐺
2 grpoidval.2 . . 3 𝑈 = (GId‘𝐺)
31, 2grpoidval 30316 . 2 (𝐺 ∈ GrpOp → 𝑈 = (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
41grpoideu 30312 . . 3 (𝐺 ∈ GrpOp → ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 riotacl 7388 . . 3 (∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋)
64, 5syl 17 . 2 (𝐺 ∈ GrpOp → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ 𝑋)
73, 6eqeltrd 2829 1 (𝐺 ∈ GrpOp → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3057  ∃!wreu 3370  ran crn 5673  cfv 6542  crio 7369  (class class class)co 7414  GrpOpcgr 30292  GIdcgi 30293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-riota 7370  df-ov 7417  df-grpo 30296  df-gid 30297
This theorem is referenced by:  grpoid  30323  vczcl  30375  nvzcl  30437  ghomidOLD  37356  grpokerinj  37360  rngo0cl  37386  rngolz  37389  rngorz  37390  gidsn  37419  keridl  37499
  Copyright terms: Public domain W3C validator