MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmet0 Structured version   Visualization version   GIF version

Theorem psmet0 24036
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐷𝐴) = 0)

Proof of Theorem psmet0
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6930 . . . . . . . 8 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 ∈ V)
2 ispsmet 24032 . . . . . . . 8 (𝑋 ∈ V β†’ (𝐷 ∈ (PsMetβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘Ž ∈ 𝑋 ((π‘Žπ·π‘Ž) = 0 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ ∈ 𝑋 (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐷 ∈ (PsMetβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘Ž ∈ 𝑋 ((π‘Žπ·π‘Ž) = 0 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ ∈ 𝑋 (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏))))))
43ibi 266 . . . . . 6 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘Ž ∈ 𝑋 ((π‘Žπ·π‘Ž) = 0 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ ∈ 𝑋 (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏)))))
54simprd 494 . . . . 5 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘Ž ∈ 𝑋 ((π‘Žπ·π‘Ž) = 0 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ ∈ 𝑋 (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏))))
65r19.21bi 3246 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) β†’ ((π‘Žπ·π‘Ž) = 0 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ ∈ 𝑋 (π‘Žπ·π‘) ≀ ((π‘π·π‘Ž) +𝑒 (𝑐𝐷𝑏))))
76simpld 493 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ π‘Ž ∈ 𝑋) β†’ (π‘Žπ·π‘Ž) = 0)
87ralrimiva 3144 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ βˆ€π‘Ž ∈ 𝑋 (π‘Žπ·π‘Ž) = 0)
9 id 22 . . . . 5 (π‘Ž = 𝐴 β†’ π‘Ž = 𝐴)
109, 9oveq12d 7431 . . . 4 (π‘Ž = 𝐴 β†’ (π‘Žπ·π‘Ž) = (𝐴𝐷𝐴))
1110eqeq1d 2732 . . 3 (π‘Ž = 𝐴 β†’ ((π‘Žπ·π‘Ž) = 0 ↔ (𝐴𝐷𝐴) = 0))
1211rspcv 3609 . 2 (𝐴 ∈ 𝑋 β†’ (βˆ€π‘Ž ∈ 𝑋 (π‘Žπ·π‘Ž) = 0 β†’ (𝐴𝐷𝐴) = 0))
138, 12mpan9 505 1 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐷𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  Vcvv 3472   class class class wbr 5149   Γ— cxp 5675  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413  0cc0 11114  β„*cxr 11253   ≀ cle 11255   +𝑒 cxad 13096  PsMetcpsmet 21130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-xr 11258  df-psmet 21138
This theorem is referenced by:  psmetsym  24038  psmetge0  24040  psmetres2  24042  distspace  24044  xblcntrps  24138  ssblps  24150  metustid  24285  metider  33170  pstmfval  33172
  Copyright terms: Public domain W3C validator