Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psmet0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmet0 | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6807 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
2 | ispsmet 23457 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
4 | 3 | ibi 266 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
5 | 4 | simprd 496 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
6 | 5 | r19.21bi 3134 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
7 | 6 | simpld 495 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → (𝑎𝐷𝑎) = 0) |
8 | 7 | ralrimiva 3103 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 (𝑎𝐷𝑎) = 0) |
9 | id 22 | . . . . 5 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
10 | 9, 9 | oveq12d 7293 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎𝐷𝑎) = (𝐴𝐷𝐴)) |
11 | 10 | eqeq1d 2740 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎𝐷𝑎) = 0 ↔ (𝐴𝐷𝐴) = 0)) |
12 | 11 | rspcv 3557 | . 2 ⊢ (𝐴 ∈ 𝑋 → (∀𝑎 ∈ 𝑋 (𝑎𝐷𝑎) = 0 → (𝐴𝐷𝐴) = 0)) |
13 | 8, 12 | mpan9 507 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℝ*cxr 11008 ≤ cle 11010 +𝑒 cxad 12846 PsMetcpsmet 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-xr 11013 df-psmet 20589 |
This theorem is referenced by: psmetsym 23463 psmetge0 23465 psmetres2 23467 distspace 23469 xblcntrps 23563 ssblps 23575 metustid 23710 metider 31844 pstmfval 31846 |
Copyright terms: Public domain | W3C validator |