![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmet0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmet0 | β’ ((π· β (PsMetβπ) β§ π΄ β π) β (π΄π·π΄) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6930 | . . . . . . . 8 β’ (π· β (PsMetβπ) β π β V) | |
2 | ispsmet 24032 | . . . . . . . 8 β’ (π β V β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) | |
3 | 1, 2 | syl 17 | . . . . . . 7 β’ (π· β (PsMetβπ) β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) |
4 | 3 | ibi 266 | . . . . . 6 β’ (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π))))) |
5 | 4 | simprd 494 | . . . . 5 β’ (π· β (PsMetβπ) β βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))) |
6 | 5 | r19.21bi 3246 | . . . 4 β’ ((π· β (PsMetβπ) β§ π β π) β ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))) |
7 | 6 | simpld 493 | . . 3 β’ ((π· β (PsMetβπ) β§ π β π) β (ππ·π) = 0) |
8 | 7 | ralrimiva 3144 | . 2 β’ (π· β (PsMetβπ) β βπ β π (ππ·π) = 0) |
9 | id 22 | . . . . 5 β’ (π = π΄ β π = π΄) | |
10 | 9, 9 | oveq12d 7431 | . . . 4 β’ (π = π΄ β (ππ·π) = (π΄π·π΄)) |
11 | 10 | eqeq1d 2732 | . . 3 β’ (π = π΄ β ((ππ·π) = 0 β (π΄π·π΄) = 0)) |
12 | 11 | rspcv 3609 | . 2 β’ (π΄ β π β (βπ β π (ππ·π) = 0 β (π΄π·π΄) = 0)) |
13 | 8, 12 | mpan9 505 | 1 β’ ((π· β (PsMetβπ) β§ π΄ β π) β (π΄π·π΄) = 0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 Vcvv 3472 class class class wbr 5149 Γ cxp 5675 βΆwf 6540 βcfv 6544 (class class class)co 7413 0cc0 11114 β*cxr 11253 β€ cle 11255 +π cxad 13096 PsMetcpsmet 21130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-xr 11258 df-psmet 21138 |
This theorem is referenced by: psmetsym 24038 psmetge0 24040 psmetres2 24042 distspace 24044 xblcntrps 24138 ssblps 24150 metustid 24285 metider 33170 pstmfval 33172 |
Copyright terms: Public domain | W3C validator |