Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psmet0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmet0 | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6863 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
2 | ispsmet 23563 | . . . . . . . 8 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
4 | 3 | ibi 266 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
5 | 4 | simprd 496 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
6 | 5 | r19.21bi 3230 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
7 | 6 | simpld 495 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → (𝑎𝐷𝑎) = 0) |
8 | 7 | ralrimiva 3139 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 (𝑎𝐷𝑎) = 0) |
9 | id 22 | . . . . 5 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
10 | 9, 9 | oveq12d 7355 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎𝐷𝑎) = (𝐴𝐷𝐴)) |
11 | 10 | eqeq1d 2738 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎𝐷𝑎) = 0 ↔ (𝐴𝐷𝐴) = 0)) |
12 | 11 | rspcv 3566 | . 2 ⊢ (𝐴 ∈ 𝑋 → (∀𝑎 ∈ 𝑋 (𝑎𝐷𝑎) = 0 → (𝐴𝐷𝐴) = 0)) |
13 | 8, 12 | mpan9 507 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 class class class wbr 5092 × cxp 5618 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 0cc0 10972 ℝ*cxr 11109 ≤ cle 11111 +𝑒 cxad 12947 PsMetcpsmet 20687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-map 8688 df-xr 11114 df-psmet 20695 |
This theorem is referenced by: psmetsym 23569 psmetge0 23571 psmetres2 23573 distspace 23575 xblcntrps 23669 ssblps 23681 metustid 23816 metider 32142 pstmfval 32144 |
Copyright terms: Public domain | W3C validator |