MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmet0 Structured version   Visualization version   GIF version

Theorem psmet0 23567
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmet0 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)

Proof of Theorem psmet0
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6863 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 23563 . . . . . . . 8 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
43ibi 266 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
54simprd 496 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
65r19.21bi 3230 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
76simpld 495 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → (𝑎𝐷𝑎) = 0)
87ralrimiva 3139 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 (𝑎𝐷𝑎) = 0)
9 id 22 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
109, 9oveq12d 7355 . . . 4 (𝑎 = 𝐴 → (𝑎𝐷𝑎) = (𝐴𝐷𝐴))
1110eqeq1d 2738 . . 3 (𝑎 = 𝐴 → ((𝑎𝐷𝑎) = 0 ↔ (𝐴𝐷𝐴) = 0))
1211rspcv 3566 . 2 (𝐴𝑋 → (∀𝑎𝑋 (𝑎𝐷𝑎) = 0 → (𝐴𝐷𝐴) = 0))
138, 12mpan9 507 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441   class class class wbr 5092   × cxp 5618  wf 6475  cfv 6479  (class class class)co 7337  0cc0 10972  *cxr 11109  cle 11111   +𝑒 cxad 12947  PsMetcpsmet 20687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-map 8688  df-xr 11114  df-psmet 20695
This theorem is referenced by:  psmetsym  23569  psmetge0  23571  psmetres2  23573  distspace  23575  xblcntrps  23669  ssblps  23681  metustid  23816  metider  32142  pstmfval  32144
  Copyright terms: Public domain W3C validator