MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcntrps Structured version   Visualization version   GIF version

Theorem blcntrps 22998
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blcntrps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem blcntrps
StepHypRef Expression
1 rpxr 12377 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 12380 . . 3 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 514 . 2 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 xblcntrps 22996 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
53, 4syl3an3 1161 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114   class class class wbr 5042  cfv 6331  (class class class)co 7133  0cc0 10515  *cxr 10652   < clt 10653  +crp 12368  PsMetcpsmet 20505  ballcbl 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-map 8386  df-xr 10657  df-rp 12369  df-psmet 20513  df-bl 20516
This theorem is referenced by:  unirnblps  23005  blssexps  23012  ioorrnopnlem  42737
  Copyright terms: Public domain W3C validator