MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmet0 Structured version   Visualization version   GIF version

Theorem xmet0 24228
Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmet0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)

Proof of Theorem xmet0
StepHypRef Expression
1 eqid 2729 . 2 𝐴 = 𝐴
2 xmeteq0 24224 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐴𝑋) → ((𝐴𝐷𝐴) = 0 ↔ 𝐴 = 𝐴))
323anidm23 1423 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → ((𝐴𝐷𝐴) = 0 ↔ 𝐴 = 𝐴))
41, 3mpbiri 258 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  0cc0 11009  ∞Metcxmet 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-xr 11153  df-xmet 21254
This theorem is referenced by:  met0  24229  xmetge0  24230  xmetsym  24233  xmetpsmet  24234  xblcntr  24297  ssbl  24309  xmeter  24319  ubthlem2  30815  sitmcl  34319
  Copyright terms: Public domain W3C validator