MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmet0 Structured version   Visualization version   GIF version

Theorem xmet0 23495
Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmet0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)

Proof of Theorem xmet0
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 xmeteq0 23491 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐴𝑋) → ((𝐴𝐷𝐴) = 0 ↔ 𝐴 = 𝐴))
323anidm23 1420 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → ((𝐴𝐷𝐴) = 0 ↔ 𝐴 = 𝐴))
41, 3mpbiri 257 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  0cc0 10871  ∞Metcxmet 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-xr 11013  df-xmet 20590
This theorem is referenced by:  met0  23496  xmetge0  23497  xmetsym  23500  xmetpsmet  23501  xblcntr  23564  ssbl  23576  xmeter  23586  ubthlem2  29233  sitmcl  32318
  Copyright terms: Public domain W3C validator