| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbl | Structured version Visualization version GIF version | ||
| Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ssbl | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | simp1r 1199 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑃 ∈ 𝑋) | |
| 3 | simp2l 1200 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑅 ∈ ℝ*) | |
| 4 | simp2r 1201 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑆 ∈ ℝ*) | |
| 5 | xmet0 24252 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃𝐷𝑃) = 0) | |
| 6 | 5 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) = 0) |
| 7 | 0re 11109 | . . 3 ⊢ 0 ∈ ℝ | |
| 8 | 6, 7 | eqeltrdi 2839 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) ∈ ℝ) |
| 9 | simp3 1138 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 𝑅 ≤ 𝑆) | |
| 10 | xsubge0 13155 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅 ≤ 𝑆)) | |
| 11 | 4, 3, 10 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅 ≤ 𝑆)) |
| 12 | 9, 11 | mpbird 257 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) |
| 13 | 6, 12 | eqbrtrd 5108 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃𝐷𝑃) ≤ (𝑆 +𝑒 -𝑒𝑅)) |
| 14 | 1, 2, 2, 3, 4, 8, 13 | xblss2 24312 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*) ∧ 𝑅 ≤ 𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 ℝ*cxr 11140 ≤ cle 11142 -𝑒cxne 13003 +𝑒 cxad 13004 ∞Metcxmet 21271 ballcbl 21273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-2 12183 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-psmet 21278 df-xmet 21279 df-bl 21281 |
| This theorem is referenced by: blss 24335 ssblex 24338 blssec 24345 metequiv2 24420 met1stc 24431 met2ndci 24432 metdstri 24762 xlebnum 24886 iscmet3lem2 25214 caubl 25230 ptrecube 37660 heiborlem8 37858 |
| Copyright terms: Public domain | W3C validator |