![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbl | Structured version Visualization version GIF version |
Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ssbl | β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (π(ballβπ·)π ) β (π(ballβπ·)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1197 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β π· β (βMetβπ)) | |
2 | simp1r 1198 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β π β π) | |
3 | simp2l 1199 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β π β β*) | |
4 | simp2r 1200 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β π β β*) | |
5 | xmet0 23855 | . . . 4 β’ ((π· β (βMetβπ) β§ π β π) β (ππ·π) = 0) | |
6 | 5 | 3ad2ant1 1133 | . . 3 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (ππ·π) = 0) |
7 | 0re 11218 | . . 3 β’ 0 β β | |
8 | 6, 7 | eqeltrdi 2841 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (ππ·π) β β) |
9 | simp3 1138 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β π β€ π) | |
10 | xsubge0 13242 | . . . . 5 β’ ((π β β* β§ π β β*) β (0 β€ (π +π -ππ ) β π β€ π)) | |
11 | 4, 3, 10 | syl2anc 584 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (0 β€ (π +π -ππ ) β π β€ π)) |
12 | 9, 11 | mpbird 256 | . . 3 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β 0 β€ (π +π -ππ )) |
13 | 6, 12 | eqbrtrd 5170 | . 2 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (ππ·π) β€ (π +π -ππ )) |
14 | 1, 2, 2, 3, 4, 8, 13 | xblss2 23915 | 1 β’ (((π· β (βMetβπ) β§ π β π) β§ (π β β* β§ π β β*) β§ π β€ π) β (π(ballβπ·)π ) β (π(ballβπ·)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7411 βcr 11111 0cc0 11112 β*cxr 11249 β€ cle 11251 -πcxne 13091 +π cxad 13092 βMetcxmet 20935 ballcbl 20937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-2 12277 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-psmet 20942 df-xmet 20943 df-bl 20945 |
This theorem is referenced by: blss 23938 ssblex 23941 blssec 23948 metequiv2 24026 met1stc 24037 met2ndci 24038 metdstri 24374 xlebnum 24488 iscmet3lem2 24816 caubl 24832 ptrecube 36580 heiborlem8 36778 |
Copyright terms: Public domain | W3C validator |