MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbl Structured version   Visualization version   GIF version

Theorem ssbl 24317
Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ssbl (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))

Proof of Theorem ssbl
StepHypRef Expression
1 simp1l 1198 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simp1r 1199 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑃𝑋)
3 simp2l 1200 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑅 ∈ ℝ*)
4 simp2r 1201 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑆 ∈ ℝ*)
5 xmet0 24236 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
653ad2ant1 1133 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) = 0)
7 0re 11182 . . 3 0 ∈ ℝ
86, 7eqeltrdi 2837 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) ∈ ℝ)
9 simp3 1138 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 𝑅𝑆)
10 xsubge0 13227 . . . . 5 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ*) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅𝑆))
114, 3, 10syl2anc 584 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (0 ≤ (𝑆 +𝑒 -𝑒𝑅) ↔ 𝑅𝑆))
129, 11mpbird 257 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
136, 12eqbrtrd 5131 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃𝐷𝑃) ≤ (𝑆 +𝑒 -𝑒𝑅))
141, 2, 2, 3, 4, 8, 13xblss2 24296 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3916   class class class wbr 5109  cfv 6513  (class class class)co 7389  cr 11073  0cc0 11074  *cxr 11213  cle 11215  -𝑒cxne 13075   +𝑒 cxad 13076  ∞Metcxmet 21255  ballcbl 21257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-2 12250  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-psmet 21262  df-xmet 21263  df-bl 21265
This theorem is referenced by:  blss  24319  ssblex  24322  blssec  24329  metequiv2  24404  met1stc  24415  met2ndci  24416  metdstri  24746  xlebnum  24870  iscmet3lem2  25198  caubl  25214  ptrecube  37609  heiborlem8  37807
  Copyright terms: Public domain W3C validator