![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetsym | Structured version Visualization version GIF version |
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetsym | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetcl 23819 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
2 | xmetcl 23819 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) ∈ ℝ*) | |
3 | 2 | 3com23 1127 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ∈ ℝ*) |
4 | simp1 1137 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
5 | simp3 1139 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
6 | simp2 1138 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
7 | xmettri2 23828 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵))) | |
8 | 4, 5, 6, 5, 7 | syl13anc 1373 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵))) |
9 | xmet0 23830 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) | |
10 | 9 | 3adant2 1132 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) |
11 | 10 | oveq2d 7420 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0)) |
12 | 2 | xaddridd 13218 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴)) |
13 | 12 | 3com23 1127 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴)) |
14 | 11, 13 | eqtrd 2773 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴)) |
15 | 8, 14 | breqtrd 5173 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴)) |
16 | xmettri2 23828 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴))) | |
17 | 4, 6, 5, 6, 16 | syl13anc 1373 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴))) |
18 | xmet0 23830 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | |
19 | 18 | 3adant3 1133 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
20 | 19 | oveq2d 7420 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
21 | 1 | xaddridd 13218 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
22 | 20, 21 | eqtrd 2773 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵)) |
23 | 17, 22 | breqtrd 5173 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵)) |
24 | 1, 3, 15, 23 | xrletrid 13130 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 0cc0 11106 ℝ*cxr 11243 ≤ cle 11245 +𝑒 cxad 13086 ∞Metcxmet 20914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-xadd 13089 df-xmet 20922 |
This theorem is referenced by: xmettpos 23837 metsym 23838 xmettri 23839 xmettri3 23841 xmetrtri2 23844 elbl3 23880 blss 23913 xmeter 23921 xmssym 23953 metcnp2 24033 metdcnlem 24334 metdstri 24349 metdsle 24350 metdscn 24354 metnrmlem1 24357 metnrmlem3 24359 nmhmcn 24618 lmmbr2 24758 iscau2 24776 iscau3 24777 iscau4 24778 iscauf 24779 caucfil 24782 nglmle 24801 dvlip2 25494 ubthlem1 30101 ubthlem2 30102 heicant 36461 |
Copyright terms: Public domain | W3C validator |