MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetge0 Structured version   Visualization version   GIF version

Theorem xmetge0 24239
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetge0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetge0
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 simp2 1137 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
3 simp3 1138 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 xmettri2 24235 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐵𝑋)) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
51, 2, 3, 3, 4syl13anc 1374 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
6 2re 12267 . . . . 5 2 ∈ ℝ
7 rexr 11227 . . . . 5 (2 ∈ ℝ → 2 ∈ ℝ*)
8 xmul01 13234 . . . . 5 (2 ∈ ℝ* → (2 ·e 0) = 0)
96, 7, 8mp2b 10 . . . 4 (2 ·e 0) = 0
10 xmet0 24237 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
11103adant2 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
129, 11eqtr4id 2784 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) = (𝐵𝐷𝐵))
13 xmetcl 24226 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
14 x2times 13266 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ* → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
1513, 14syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
165, 12, 153brtr4d 5142 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵)))
17 0xr 11228 . . 3 0 ∈ ℝ*
18 2rp 12963 . . . 4 2 ∈ ℝ+
1918a1i 11 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℝ+)
20 xlemul2 13258 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ 2 ∈ ℝ+) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2117, 13, 19, 20mp3an2i 1468 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2216, 21mpbird 257 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  *cxr 11214  cle 11216  2c2 12248  +crp 12958   +𝑒 cxad 13077   ·e cxmu 13078  ∞Metcxmet 21256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-xmet 21264
This theorem is referenced by:  metge0  24240  xmetlecl  24241  xmetrtri  24250  xmetgt0  24253  prdsxmetlem  24263  imasdsf1olem  24268  xpsdsval  24276  xblpnf  24291  blgt0  24294  xblss2  24297  xbln0  24309  xmsge0  24358  comet  24408  stdbdxmet  24410  stdbdmet  24411  xrsmopn  24708  metdsf  24744  metdstri  24747  metdscnlem  24751  iscfil2  25173  heicant  37656
  Copyright terms: Public domain W3C validator