MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetge0 Structured version   Visualization version   GIF version

Theorem xmetge0 24270
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetge0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))

Proof of Theorem xmetge0
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simp2 1134 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
3 simp3 1135 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐡 ∈ 𝑋)
4 xmettri2 24266 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐡𝐷𝐡) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
51, 2, 3, 3, 4syl13anc 1369 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
6 2re 12324 . . . . 5 2 ∈ ℝ
7 rexr 11298 . . . . 5 (2 ∈ ℝ β†’ 2 ∈ ℝ*)
8 xmul01 13286 . . . . 5 (2 ∈ ℝ* β†’ (2 Β·e 0) = 0)
96, 7, 8mp2b 10 . . . 4 (2 Β·e 0) = 0
10 xmet0 24268 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) = 0)
11103adant2 1128 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) = 0)
129, 11eqtr4id 2787 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e 0) = (𝐡𝐷𝐡))
13 xmetcl 24257 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
14 x2times 13318 . . . 4 ((𝐴𝐷𝐡) ∈ ℝ* β†’ (2 Β·e (𝐴𝐷𝐡)) = ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
1513, 14syl 17 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e (𝐴𝐷𝐡)) = ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
165, 12, 153brtr4d 5184 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡)))
17 0xr 11299 . . 3 0 ∈ ℝ*
18 2rp 13019 . . . 4 2 ∈ ℝ+
1918a1i 11 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 2 ∈ ℝ+)
20 xlemul2 13310 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐡) ∈ ℝ* ∧ 2 ∈ ℝ+) β†’ (0 ≀ (𝐴𝐷𝐡) ↔ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡))))
2117, 13, 19, 20mp3an2i 1462 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (0 ≀ (𝐴𝐷𝐡) ↔ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡))))
2216, 21mpbird 256 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  β„cr 11145  0cc0 11146  β„*cxr 11285   ≀ cle 11287  2c2 12305  β„+crp 13014   +𝑒 cxad 13130   Β·e cxmu 13131  βˆžMetcxmet 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-2 12313  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-xmet 21279
This theorem is referenced by:  metge0  24271  xmetlecl  24272  xmetrtri  24281  xmetgt0  24284  prdsxmetlem  24294  imasdsf1olem  24299  xpsdsval  24307  xblpnf  24322  blgt0  24325  xblss2  24328  xbln0  24340  xmsge0  24389  comet  24442  stdbdxmet  24444  stdbdmet  24445  xrsmopn  24748  metdsf  24784  metdstri  24787  metdscnlem  24791  iscfil2  25214  heicant  37161
  Copyright terms: Public domain W3C validator