![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetge0 | Structured version Visualization version GIF version |
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetge0 | β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β π· β (βMetβπ)) | |
2 | simp2 1137 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β π΄ β π) | |
3 | simp3 1138 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β π΅ β π) | |
4 | xmettri2 23837 | . . . 4 β’ ((π· β (βMetβπ) β§ (π΄ β π β§ π΅ β π β§ π΅ β π)) β (π΅π·π΅) β€ ((π΄π·π΅) +π (π΄π·π΅))) | |
5 | 1, 2, 3, 3, 4 | syl13anc 1372 | . . 3 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΅π·π΅) β€ ((π΄π·π΅) +π (π΄π·π΅))) |
6 | 2re 12282 | . . . . 5 β’ 2 β β | |
7 | rexr 11256 | . . . . 5 β’ (2 β β β 2 β β*) | |
8 | xmul01 13242 | . . . . 5 β’ (2 β β* β (2 Β·e 0) = 0) | |
9 | 6, 7, 8 | mp2b 10 | . . . 4 β’ (2 Β·e 0) = 0 |
10 | xmet0 23839 | . . . . 5 β’ ((π· β (βMetβπ) β§ π΅ β π) β (π΅π·π΅) = 0) | |
11 | 10 | 3adant2 1131 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΅π·π΅) = 0) |
12 | 9, 11 | eqtr4id 2791 | . . 3 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e 0) = (π΅π·π΅)) |
13 | xmetcl 23828 | . . . 4 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β*) | |
14 | x2times 13274 | . . . 4 β’ ((π΄π·π΅) β β* β (2 Β·e (π΄π·π΅)) = ((π΄π·π΅) +π (π΄π·π΅))) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e (π΄π·π΅)) = ((π΄π·π΅) +π (π΄π·π΅))) |
16 | 5, 12, 15 | 3brtr4d 5179 | . 2 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅))) |
17 | 0xr 11257 | . . 3 β’ 0 β β* | |
18 | 2rp 12975 | . . . 4 β’ 2 β β+ | |
19 | 18 | a1i 11 | . . 3 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β 2 β β+) |
20 | xlemul2 13266 | . . 3 β’ ((0 β β* β§ (π΄π·π΅) β β* β§ 2 β β+) β (0 β€ (π΄π·π΅) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅)))) | |
21 | 17, 13, 19, 20 | mp3an2i 1466 | . 2 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β (0 β€ (π΄π·π΅) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅)))) |
22 | 16, 21 | mpbird 256 | 1 β’ ((π· β (βMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 β*cxr 11243 β€ cle 11245 2c2 12263 β+crp 12970 +π cxad 13086 Β·e cxmu 13087 βMetcxmet 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-xmet 20929 |
This theorem is referenced by: metge0 23842 xmetlecl 23843 xmetrtri 23852 xmetgt0 23855 prdsxmetlem 23865 imasdsf1olem 23870 xpsdsval 23878 xblpnf 23893 blgt0 23896 xblss2 23899 xbln0 23911 xmsge0 23960 comet 24013 stdbdxmet 24015 stdbdmet 24016 xrsmopn 24319 metdsf 24355 metdstri 24358 metdscnlem 24362 iscfil2 24774 heicant 36511 |
Copyright terms: Public domain | W3C validator |