MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetge0 Structured version   Visualization version   GIF version

Theorem xmetge0 23841
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetge0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))

Proof of Theorem xmetge0
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simp2 1137 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
3 simp3 1138 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 𝐡 ∈ 𝑋)
4 xmettri2 23837 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐡𝐷𝐡) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
51, 2, 3, 3, 4syl13anc 1372 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
6 2re 12282 . . . . 5 2 ∈ ℝ
7 rexr 11256 . . . . 5 (2 ∈ ℝ β†’ 2 ∈ ℝ*)
8 xmul01 13242 . . . . 5 (2 ∈ ℝ* β†’ (2 Β·e 0) = 0)
96, 7, 8mp2b 10 . . . 4 (2 Β·e 0) = 0
10 xmet0 23839 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) = 0)
11103adant2 1131 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐡𝐷𝐡) = 0)
129, 11eqtr4id 2791 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e 0) = (𝐡𝐷𝐡))
13 xmetcl 23828 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
14 x2times 13274 . . . 4 ((𝐴𝐷𝐡) ∈ ℝ* β†’ (2 Β·e (𝐴𝐷𝐡)) = ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
1513, 14syl 17 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e (𝐴𝐷𝐡)) = ((𝐴𝐷𝐡) +𝑒 (𝐴𝐷𝐡)))
165, 12, 153brtr4d 5179 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡)))
17 0xr 11257 . . 3 0 ∈ ℝ*
18 2rp 12975 . . . 4 2 ∈ ℝ+
1918a1i 11 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 2 ∈ ℝ+)
20 xlemul2 13266 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐡) ∈ ℝ* ∧ 2 ∈ ℝ+) β†’ (0 ≀ (𝐴𝐷𝐡) ↔ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡))))
2117, 13, 19, 20mp3an2i 1466 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (0 ≀ (𝐴𝐷𝐡) ↔ (2 Β·e 0) ≀ (2 Β·e (𝐴𝐷𝐡))))
2216, 21mpbird 256 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106  β„*cxr 11243   ≀ cle 11245  2c2 12263  β„+crp 12970   +𝑒 cxad 13086   Β·e cxmu 13087  βˆžMetcxmet 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-xmet 20929
This theorem is referenced by:  metge0  23842  xmetlecl  23843  xmetrtri  23852  xmetgt0  23855  prdsxmetlem  23865  imasdsf1olem  23870  xpsdsval  23878  xblpnf  23893  blgt0  23896  xblss2  23899  xbln0  23911  xmsge0  23960  comet  24013  stdbdxmet  24015  stdbdmet  24016  xrsmopn  24319  metdsf  24355  metdstri  24358  metdscnlem  24362  iscfil2  24774  heicant  36511
  Copyright terms: Public domain W3C validator