MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetge0 Structured version   Visualization version   GIF version

Theorem xmetge0 24208
Description: The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetge0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))

Proof of Theorem xmetge0
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 simp2 1137 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
3 simp3 1138 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 xmettri2 24204 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐵𝑋)) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
51, 2, 3, 3, 4syl13anc 1374 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
6 2re 12236 . . . . 5 2 ∈ ℝ
7 rexr 11196 . . . . 5 (2 ∈ ℝ → 2 ∈ ℝ*)
8 xmul01 13203 . . . . 5 (2 ∈ ℝ* → (2 ·e 0) = 0)
96, 7, 8mp2b 10 . . . 4 (2 ·e 0) = 0
10 xmet0 24206 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
11103adant2 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
129, 11eqtr4id 2783 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) = (𝐵𝐷𝐵))
13 xmetcl 24195 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
14 x2times 13235 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ* → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
1513, 14syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵)))
165, 12, 153brtr4d 5134 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵)))
17 0xr 11197 . . 3 0 ∈ ℝ*
18 2rp 12932 . . . 4 2 ∈ ℝ+
1918a1i 11 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 2 ∈ ℝ+)
20 xlemul2 13227 . . 3 ((0 ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ 2 ∈ ℝ+) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2117, 13, 19, 20mp3an2i 1468 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))))
2216, 21mpbird 257 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  *cxr 11183  cle 11185  2c2 12217  +crp 12927   +𝑒 cxad 13046   ·e cxmu 13047  ∞Metcxmet 21225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-2 12225  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-xmet 21233
This theorem is referenced by:  metge0  24209  xmetlecl  24210  xmetrtri  24219  xmetgt0  24222  prdsxmetlem  24232  imasdsf1olem  24237  xpsdsval  24245  xblpnf  24260  blgt0  24263  xblss2  24266  xbln0  24278  xmsge0  24327  comet  24377  stdbdxmet  24379  stdbdmet  24380  xrsmopn  24677  metdsf  24713  metdstri  24716  metdscnlem  24720  iscfil2  25142  heicant  37622
  Copyright terms: Public domain W3C validator