![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom2g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom2g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5689 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴)) | |
2 | xpeq1 5689 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵)) | |
3 | 1, 2 | breq12d 5160 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
4 | 3 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))) |
5 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | xpdom2 9063 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) |
7 | 4, 6 | vtoclg 3556 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
8 | 7 | imp 408 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 × cxp 5673 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fv 6548 df-dom 8937 |
This theorem is referenced by: xpdom1g 9065 xpen 9136 infxpdom 10202 fnct 10528 unirnfdomd 10558 gchxpidm 10660 gchhar 10670 |
Copyright terms: Public domain | W3C validator |