Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpdom2g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom2g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5603 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴)) | |
2 | xpeq1 5603 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵)) | |
3 | 1, 2 | breq12d 5087 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
4 | 3 | imbi2d 341 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))) |
5 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | xpdom2 8854 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) |
7 | 4, 6 | vtoclg 3505 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
8 | 7 | imp 407 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 × cxp 5587 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 df-dom 8735 |
This theorem is referenced by: xpdom1g 8856 xpen 8927 infxpdom 9967 fnct 10293 unirnfdomd 10323 gchxpidm 10425 gchhar 10435 |
Copyright terms: Public domain | W3C validator |