![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom2g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom2g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5703 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴)) | |
2 | xpeq1 5703 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵)) | |
3 | 1, 2 | breq12d 5161 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))) |
5 | vex 3482 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | xpdom2 9106 | . . 3 ⊢ (𝐴 ≼ 𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) |
7 | 4, 6 | vtoclg 3554 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐴 ≼ 𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))) |
8 | 7 | imp 406 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 × cxp 5687 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fv 6571 df-dom 8986 |
This theorem is referenced by: xpdom1g 9108 xpen 9179 infxpdom 10248 fnct 10575 unirnfdomd 10605 gchxpidm 10707 gchhar 10717 |
Copyright terms: Public domain | W3C validator |