MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom2g Structured version   Visualization version   GIF version

Theorem xpdom2g 8997
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom2g ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))

Proof of Theorem xpdom2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xpeq1 5637 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐴) = (𝐶 × 𝐴))
2 xpeq1 5637 . . . . 5 (𝑥 = 𝐶 → (𝑥 × 𝐵) = (𝐶 × 𝐵))
31, 2breq12d 5108 . . . 4 (𝑥 = 𝐶 → ((𝑥 × 𝐴) ≼ (𝑥 × 𝐵) ↔ (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
43imbi2d 340 . . 3 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵)) ↔ (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))))
5 vex 3442 . . . 4 𝑥 ∈ V
65xpdom2 8996 . . 3 (𝐴𝐵 → (𝑥 × 𝐴) ≼ (𝑥 × 𝐵))
74, 6vtoclg 3511 . 2 (𝐶𝑉 → (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)))
87imp 406 1 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095   × cxp 5621  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-dom 8881
This theorem is referenced by:  xpdom1g  8998  xpen  9064  infxpdom  10123  fnct  10450  unirnfdomd  10480  gchxpidm  10582  gchhar  10592
  Copyright terms: Public domain W3C validator