| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdom1g | Structured version Visualization version GIF version | ||
| Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpdom1g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8991 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5741 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | xpcomeng 9104 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
| 5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
| 6 | xpdom2g 9108 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | |
| 7 | 1 | brrelex2i 5742 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 8 | xpcomeng 9104 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) | |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) |
| 10 | domentr 9053 | . . 3 ⊢ (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) | |
| 11 | 6, 9, 10 | syl2anc 584 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) |
| 12 | endomtr 9052 | . 2 ⊢ (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
| 13 | 5, 11, 12 | syl2anc 584 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 × cxp 5683 ≈ cen 8982 ≼ cdom 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-1st 8014 df-2nd 8015 df-en 8986 df-dom 8987 |
| This theorem is referenced by: xpdom1 9111 xpen 9180 xpct 10056 infpwfien 10102 infdjuabs 10245 fin56 10433 fnct 10577 iunctb 10614 canthp1lem1 10692 pwdjundom 10707 gchxpidm 10709 |
| Copyright terms: Public domain | W3C validator |