MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Structured version   Visualization version   GIF version

Theorem xpdom1g 9020
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 8896 . . . 4 Rel ≼
21brrelex1i 5693 . . 3 (𝐴𝐵𝐴 ∈ V)
3 xpcomeng 9015 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
43ancoms 460 . . 3 ((𝐶𝑉𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
52, 4sylan2 594 . 2 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
6 xpdom2g 9019 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
71brrelex2i 5694 . . . 4 (𝐴𝐵𝐵 ∈ V)
8 xpcomeng 9015 . . . 4 ((𝐶𝑉𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
97, 8sylan2 594 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
10 domentr 8960 . . 3 (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
116, 9, 10syl2anc 585 . 2 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
12 endomtr 8959 . 2 (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
135, 11, 12syl2anc 585 1 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  Vcvv 3448   class class class wbr 5110   × cxp 5636  cen 8887  cdom 8888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-1st 7926  df-2nd 7927  df-en 8891  df-dom 8892
This theorem is referenced by:  xpdom1  9022  xpen  9091  xpct  9959  infpwfien  10005  infdjuabs  10149  fin56  10336  fnct  10480  iunctb  10517  canthp1lem1  10595  pwdjundom  10610  gchxpidm  10612
  Copyright terms: Public domain W3C validator