Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpdom1g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom1g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8697 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5634 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | xpcomeng 8804 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) | |
4 | 3 | ancoms 458 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
5 | 2, 4 | sylan2 592 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
6 | xpdom2g 8808 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | |
7 | 1 | brrelex2i 5635 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
8 | xpcomeng 8804 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) | |
9 | 7, 8 | sylan2 592 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) |
10 | domentr 8754 | . . 3 ⊢ (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) | |
11 | 6, 9, 10 | syl2anc 583 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) |
12 | endomtr 8753 | . 2 ⊢ (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
13 | 5, 11, 12 | syl2anc 583 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 × cxp 5578 ≈ cen 8688 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-en 8692 df-dom 8693 |
This theorem is referenced by: xpdom1 8811 xpen 8876 xpct 9703 infpwfien 9749 infdjuabs 9893 fin56 10080 fnct 10224 iunctb 10261 canthp1lem1 10339 pwdjundom 10354 gchxpidm 10356 |
Copyright terms: Public domain | W3C validator |