MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Structured version   Visualization version   GIF version

Theorem xpdom1g 8299
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 8201 . . . 4 Rel ≼
21brrelex1i 5363 . . 3 (𝐴𝐵𝐴 ∈ V)
3 xpcomeng 8294 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
43ancoms 451 . . 3 ((𝐶𝑉𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
52, 4sylan2 587 . 2 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
6 xpdom2g 8298 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
71brrelex2i 5364 . . . 4 (𝐴𝐵𝐵 ∈ V)
8 xpcomeng 8294 . . . 4 ((𝐶𝑉𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
97, 8sylan2 587 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
10 domentr 8254 . . 3 (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
116, 9, 10syl2anc 580 . 2 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
12 endomtr 8253 . 2 (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
135, 11, 12syl2anc 580 1 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  Vcvv 3385   class class class wbr 4843   × cxp 5310  cen 8192  cdom 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-1st 7401  df-2nd 7402  df-en 8196  df-dom 8197
This theorem is referenced by:  xpdom1  8301  xpen  8365  xpct  9125  infpwfien  9171  fnct  9647  iunctb  9684  canthp1lem1  9762  gchxpidm  9779
  Copyright terms: Public domain W3C validator