MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Structured version   Visualization version   GIF version

Theorem xpdom1g 8998
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 8885 . . . 4 Rel ≼
21brrelex1i 5679 . . 3 (𝐴𝐵𝐴 ∈ V)
3 xpcomeng 8993 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
43ancoms 458 . . 3 ((𝐶𝑉𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
52, 4sylan2 593 . 2 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴))
6 xpdom2g 8997 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
71brrelex2i 5680 . . . 4 (𝐴𝐵𝐵 ∈ V)
8 xpcomeng 8993 . . . 4 ((𝐶𝑉𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
97, 8sylan2 593 . . 3 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶))
10 domentr 8945 . . 3 (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
116, 9, 10syl2anc 584 . 2 ((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶))
12 endomtr 8944 . 2 (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
135, 11, 12syl2anc 584 1 ((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3438   class class class wbr 5095   × cxp 5621  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7931  df-2nd 7932  df-en 8880  df-dom 8881
This theorem is referenced by:  xpdom1  9000  xpen  9064  xpct  9929  infpwfien  9975  infdjuabs  10118  fin56  10306  fnct  10450  iunctb  10487  canthp1lem1  10565  pwdjundom  10580  gchxpidm  10582
  Copyright terms: Public domain W3C validator