![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom1g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom1g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8896 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5693 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | xpcomeng 9015 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) | |
4 | 3 | ancoms 460 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
5 | 2, 4 | sylan2 594 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
6 | xpdom2g 9019 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | |
7 | 1 | brrelex2i 5694 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
8 | xpcomeng 9015 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) | |
9 | 7, 8 | sylan2 594 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) |
10 | domentr 8960 | . . 3 ⊢ (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) | |
11 | 6, 9, 10 | syl2anc 585 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) |
12 | endomtr 8959 | . 2 ⊢ (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
13 | 5, 11, 12 | syl2anc 585 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3448 class class class wbr 5110 × cxp 5636 ≈ cen 8887 ≼ cdom 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-1st 7926 df-2nd 7927 df-en 8891 df-dom 8892 |
This theorem is referenced by: xpdom1 9022 xpen 9091 xpct 9959 infpwfien 10005 infdjuabs 10149 fin56 10336 fnct 10480 iunctb 10517 canthp1lem1 10595 pwdjundom 10610 gchxpidm 10612 |
Copyright terms: Public domain | W3C validator |