![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpdom1g | Structured version Visualization version GIF version |
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpdom1g | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8944 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5732 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | xpcomeng 9063 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) | |
4 | 3 | ancoms 459 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
5 | 2, 4 | sylan2 593 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≈ (𝐶 × 𝐴)) |
6 | xpdom2g 9067 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵)) | |
7 | 1 | brrelex2i 5733 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
8 | xpcomeng 9063 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) | |
9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) |
10 | domentr 9008 | . . 3 ⊢ (((𝐶 × 𝐴) ≼ (𝐶 × 𝐵) ∧ (𝐶 × 𝐵) ≈ (𝐵 × 𝐶)) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) | |
11 | 6, 9, 10 | syl2anc 584 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) |
12 | endomtr 9007 | . 2 ⊢ (((𝐴 × 𝐶) ≈ (𝐶 × 𝐴) ∧ (𝐶 × 𝐴) ≼ (𝐵 × 𝐶)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
13 | 5, 11, 12 | syl2anc 584 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 × cxp 5674 ≈ cen 8935 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7974 df-2nd 7975 df-en 8939 df-dom 8940 |
This theorem is referenced by: xpdom1 9070 xpen 9139 xpct 10010 infpwfien 10056 infdjuabs 10200 fin56 10387 fnct 10531 iunctb 10568 canthp1lem1 10646 pwdjundom 10661 gchxpidm 10663 |
Copyright terms: Public domain | W3C validator |