MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnfdomd Structured version   Visualization version   GIF version

Theorem unirnfdomd 10323
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnfdomd.1 (𝜑𝐹:𝑇⟶Fin)
unirnfdomd.2 (𝜑 → ¬ 𝑇 ∈ Fin)
unirnfdomd.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
unirnfdomd (𝜑 ran 𝐹𝑇)

Proof of Theorem unirnfdomd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unirnfdomd.1 . . . . . . . 8 (𝜑𝐹:𝑇⟶Fin)
21ffnd 6601 . . . . . . 7 (𝜑𝐹 Fn 𝑇)
3 unirnfdomd.3 . . . . . . 7 (𝜑𝑇𝑉)
4 fnex 7093 . . . . . . 7 ((𝐹 Fn 𝑇𝑇𝑉) → 𝐹 ∈ V)
52, 3, 4syl2anc 584 . . . . . 6 (𝜑𝐹 ∈ V)
6 rnexg 7751 . . . . . 6 (𝐹 ∈ V → ran 𝐹 ∈ V)
75, 6syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ V)
8 frn 6607 . . . . . . 7 (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin)
9 dfss3 3909 . . . . . . 7 (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
108, 9sylib 217 . . . . . 6 (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
11 fict 9411 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1211ralimi 3087 . . . . . 6 (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
131, 10, 123syl 18 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
14 unidom 10299 . . . . 5 ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ran 𝐹 ≼ (ran 𝐹 × ω))
157, 13, 14syl2anc 584 . . . 4 (𝜑 ran 𝐹 ≼ (ran 𝐹 × ω))
16 fnrndomg 10292 . . . . . 6 (𝑇𝑉 → (𝐹 Fn 𝑇 → ran 𝐹𝑇))
173, 2, 16sylc 65 . . . . 5 (𝜑 → ran 𝐹𝑇)
18 omex 9401 . . . . . 6 ω ∈ V
1918xpdom1 8858 . . . . 5 (ran 𝐹𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
2017, 19syl 17 . . . 4 (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
21 domtr 8793 . . . 4 (( ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ran 𝐹 ≼ (𝑇 × ω))
2215, 20, 21syl2anc 584 . . 3 (𝜑 ran 𝐹 ≼ (𝑇 × ω))
23 unirnfdomd.2 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
24 infinf 10322 . . . . . 6 (𝑇𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
253, 24syl 17 . . . . 5 (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
2623, 25mpbid 231 . . . 4 (𝜑 → ω ≼ 𝑇)
27 xpdom2g 8855 . . . 4 ((𝑇𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇))
283, 26, 27syl2anc 584 . . 3 (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇))
29 domtr 8793 . . 3 (( ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ran 𝐹 ≼ (𝑇 × 𝑇))
3022, 28, 29syl2anc 584 . 2 (𝜑 ran 𝐹 ≼ (𝑇 × 𝑇))
31 infxpidm 10318 . . 3 (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇)
3226, 31syl 17 . 2 (𝜑 → (𝑇 × 𝑇) ≈ 𝑇)
33 domentr 8799 . 2 (( ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ran 𝐹𝑇)
3430, 32, 33syl2anc 584 1 (𝜑 ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2106  wral 3064  Vcvv 3432  wss 3887   cuni 4839   class class class wbr 5074   × cxp 5587  ran crn 5590   Fn wfn 6428  wf 6429  ωcom 7712  cen 8730  cdom 8731  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-acn 9700  df-ac 9872
This theorem is referenced by:  acsdomd  18275
  Copyright terms: Public domain W3C validator