| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnfdomd | Structured version Visualization version GIF version | ||
| Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unirnfdomd.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
| unirnfdomd.2 | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| unirnfdomd.3 | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| unirnfdomd | ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnfdomd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
| 2 | 1 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
| 3 | unirnfdomd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 4 | fnex 7194 | . . . . . . 7 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉) → 𝐹 ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | rnexg 7881 | . . . . . 6 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ∈ V) |
| 8 | frn 6698 | . . . . . . 7 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
| 9 | dfss3 3938 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) |
| 11 | fict 9613 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
| 12 | 11 | ralimi 3067 | . . . . . 6 ⊢ (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 13 | 1, 10, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 14 | unidom 10503 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) | |
| 15 | 7, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) |
| 16 | fnrndomg 10496 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇)) | |
| 17 | 3, 2, 16 | sylc 65 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ≼ 𝑇) |
| 18 | omex 9603 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | 18 | xpdom1 9045 | . . . . 5 ⊢ (ran 𝐹 ≼ 𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 21 | domtr 8981 | . . . 4 ⊢ ((∪ ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ∪ ran 𝐹 ≼ (𝑇 × ω)) | |
| 22 | 15, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × ω)) |
| 23 | unirnfdomd.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | |
| 24 | infinf 10526 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) | |
| 25 | 3, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) |
| 26 | 23, 25 | mpbid 232 | . . . 4 ⊢ (𝜑 → ω ≼ 𝑇) |
| 27 | xpdom2g 9042 | . . . 4 ⊢ ((𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇)) | |
| 28 | 3, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇)) |
| 29 | domtr 8981 | . . 3 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) | |
| 30 | 22, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) |
| 31 | infxpidm 10522 | . . 3 ⊢ (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇) | |
| 32 | 26, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 × 𝑇) ≈ 𝑇) |
| 33 | domentr 8987 | . 2 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ∪ ran 𝐹 ≼ 𝑇) | |
| 34 | 30, 32, 33 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 × cxp 5639 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-card 9899 df-acn 9902 df-ac 10076 |
| This theorem is referenced by: acsdomd 18523 |
| Copyright terms: Public domain | W3C validator |