MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnfdomd Structured version   Visualization version   GIF version

Theorem unirnfdomd 10496
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnfdomd.1 (𝜑𝐹:𝑇⟶Fin)
unirnfdomd.2 (𝜑 → ¬ 𝑇 ∈ Fin)
unirnfdomd.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
unirnfdomd (𝜑 ran 𝐹𝑇)

Proof of Theorem unirnfdomd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unirnfdomd.1 . . . . . . . 8 (𝜑𝐹:𝑇⟶Fin)
21ffnd 6671 . . . . . . 7 (𝜑𝐹 Fn 𝑇)
3 unirnfdomd.3 . . . . . . 7 (𝜑𝑇𝑉)
4 fnex 7173 . . . . . . 7 ((𝐹 Fn 𝑇𝑇𝑉) → 𝐹 ∈ V)
52, 3, 4syl2anc 584 . . . . . 6 (𝜑𝐹 ∈ V)
6 rnexg 7858 . . . . . 6 (𝐹 ∈ V → ran 𝐹 ∈ V)
75, 6syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ V)
8 frn 6677 . . . . . . 7 (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin)
9 dfss3 3932 . . . . . . 7 (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
108, 9sylib 218 . . . . . 6 (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
11 fict 9582 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1211ralimi 3066 . . . . . 6 (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
131, 10, 123syl 18 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
14 unidom 10472 . . . . 5 ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ran 𝐹 ≼ (ran 𝐹 × ω))
157, 13, 14syl2anc 584 . . . 4 (𝜑 ran 𝐹 ≼ (ran 𝐹 × ω))
16 fnrndomg 10465 . . . . . 6 (𝑇𝑉 → (𝐹 Fn 𝑇 → ran 𝐹𝑇))
173, 2, 16sylc 65 . . . . 5 (𝜑 → ran 𝐹𝑇)
18 omex 9572 . . . . . 6 ω ∈ V
1918xpdom1 9017 . . . . 5 (ran 𝐹𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
2017, 19syl 17 . . . 4 (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
21 domtr 8955 . . . 4 (( ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ran 𝐹 ≼ (𝑇 × ω))
2215, 20, 21syl2anc 584 . . 3 (𝜑 ran 𝐹 ≼ (𝑇 × ω))
23 unirnfdomd.2 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
24 infinf 10495 . . . . . 6 (𝑇𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
253, 24syl 17 . . . . 5 (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
2623, 25mpbid 232 . . . 4 (𝜑 → ω ≼ 𝑇)
27 xpdom2g 9014 . . . 4 ((𝑇𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇))
283, 26, 27syl2anc 584 . . 3 (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇))
29 domtr 8955 . . 3 (( ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ran 𝐹 ≼ (𝑇 × 𝑇))
3022, 28, 29syl2anc 584 . 2 (𝜑 ran 𝐹 ≼ (𝑇 × 𝑇))
31 infxpidm 10491 . . 3 (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇)
3226, 31syl 17 . 2 (𝜑 → (𝑇 × 𝑇) ≈ 𝑇)
33 domentr 8961 . 2 (( ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ran 𝐹𝑇)
3430, 32, 33syl2anc 584 1 (𝜑 ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wral 3044  Vcvv 3444  wss 3911   cuni 4867   class class class wbr 5102   × cxp 5629  ran crn 5632   Fn wfn 6494  wf 6495  ωcom 7822  cen 8892  cdom 8893  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-card 9868  df-acn 9871  df-ac 10045
This theorem is referenced by:  acsdomd  18498
  Copyright terms: Public domain W3C validator