Step | Hyp | Ref
| Expression |
1 | | unirnfdomd.1 |
. . . . . . . 8
β’ (π β πΉ:πβΆFin) |
2 | 1 | ffnd 6708 |
. . . . . . 7
β’ (π β πΉ Fn π) |
3 | | unirnfdomd.3 |
. . . . . . 7
β’ (π β π β π) |
4 | | fnex 7210 |
. . . . . . 7
β’ ((πΉ Fn π β§ π β π) β πΉ β V) |
5 | 2, 3, 4 | syl2anc 583 |
. . . . . 6
β’ (π β πΉ β V) |
6 | | rnexg 7888 |
. . . . . 6
β’ (πΉ β V β ran πΉ β V) |
7 | 5, 6 | syl 17 |
. . . . 5
β’ (π β ran πΉ β V) |
8 | | frn 6714 |
. . . . . . 7
β’ (πΉ:πβΆFin β ran πΉ β Fin) |
9 | | dfss3 3962 |
. . . . . . 7
β’ (ran
πΉ β Fin β
βπ₯ β ran πΉ π₯ β Fin) |
10 | 8, 9 | sylib 217 |
. . . . . 6
β’ (πΉ:πβΆFin β βπ₯ β ran πΉ π₯ β Fin) |
11 | | fict 9644 |
. . . . . . 7
β’ (π₯ β Fin β π₯ βΌ
Ο) |
12 | 11 | ralimi 3075 |
. . . . . 6
β’
(βπ₯ β
ran πΉ π₯ β Fin β βπ₯ β ran πΉ π₯ βΌ Ο) |
13 | 1, 10, 12 | 3syl 18 |
. . . . 5
β’ (π β βπ₯ β ran πΉ π₯ βΌ Ο) |
14 | | unidom 10534 |
. . . . 5
β’ ((ran
πΉ β V β§
βπ₯ β ran πΉ π₯ βΌ Ο) β βͺ ran πΉ βΌ (ran πΉ Γ Ο)) |
15 | 7, 13, 14 | syl2anc 583 |
. . . 4
β’ (π β βͺ ran πΉ βΌ (ran πΉ Γ Ο)) |
16 | | fnrndomg 10527 |
. . . . . 6
β’ (π β π β (πΉ Fn π β ran πΉ βΌ π)) |
17 | 3, 2, 16 | sylc 65 |
. . . . 5
β’ (π β ran πΉ βΌ π) |
18 | | omex 9634 |
. . . . . 6
β’ Ο
β V |
19 | 18 | xpdom1 9067 |
. . . . 5
β’ (ran
πΉ βΌ π β (ran πΉ Γ Ο) βΌ (π Γ Ο)) |
20 | 17, 19 | syl 17 |
. . . 4
β’ (π β (ran πΉ Γ Ο) βΌ (π Γ Ο)) |
21 | | domtr 8999 |
. . . 4
β’ ((βͺ ran πΉ βΌ (ran πΉ Γ Ο) β§ (ran πΉ Γ Ο) βΌ (π Γ Ο)) β βͺ ran πΉ βΌ (π Γ Ο)) |
22 | 15, 20, 21 | syl2anc 583 |
. . 3
β’ (π β βͺ ran πΉ βΌ (π Γ Ο)) |
23 | | unirnfdomd.2 |
. . . . 5
β’ (π β Β¬ π β Fin) |
24 | | infinf 10557 |
. . . . . 6
β’ (π β π β (Β¬ π β Fin β Ο βΌ π)) |
25 | 3, 24 | syl 17 |
. . . . 5
β’ (π β (Β¬ π β Fin β Ο βΌ π)) |
26 | 23, 25 | mpbid 231 |
. . . 4
β’ (π β Ο βΌ π) |
27 | | xpdom2g 9064 |
. . . 4
β’ ((π β π β§ Ο βΌ π) β (π Γ Ο) βΌ (π Γ π)) |
28 | 3, 26, 27 | syl2anc 583 |
. . 3
β’ (π β (π Γ Ο) βΌ (π Γ π)) |
29 | | domtr 8999 |
. . 3
β’ ((βͺ ran πΉ βΌ (π Γ Ο) β§ (π Γ Ο) βΌ (π Γ π)) β βͺ ran
πΉ βΌ (π Γ π)) |
30 | 22, 28, 29 | syl2anc 583 |
. 2
β’ (π β βͺ ran πΉ βΌ (π Γ π)) |
31 | | infxpidm 10553 |
. . 3
β’ (Ο
βΌ π β (π Γ π) β π) |
32 | 26, 31 | syl 17 |
. 2
β’ (π β (π Γ π) β π) |
33 | | domentr 9005 |
. 2
β’ ((βͺ ran πΉ βΌ (π Γ π) β§ (π Γ π) β π) β βͺ ran
πΉ βΌ π) |
34 | 30, 32, 33 | syl2anc 583 |
1
β’ (π β βͺ ran πΉ βΌ π) |