MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnfdomd Structured version   Visualization version   GIF version

Theorem unirnfdomd 10636
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnfdomd.1 (𝜑𝐹:𝑇⟶Fin)
unirnfdomd.2 (𝜑 → ¬ 𝑇 ∈ Fin)
unirnfdomd.3 (𝜑𝑇𝑉)
Assertion
Ref Expression
unirnfdomd (𝜑 ran 𝐹𝑇)

Proof of Theorem unirnfdomd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unirnfdomd.1 . . . . . . . 8 (𝜑𝐹:𝑇⟶Fin)
21ffnd 6748 . . . . . . 7 (𝜑𝐹 Fn 𝑇)
3 unirnfdomd.3 . . . . . . 7 (𝜑𝑇𝑉)
4 fnex 7254 . . . . . . 7 ((𝐹 Fn 𝑇𝑇𝑉) → 𝐹 ∈ V)
52, 3, 4syl2anc 583 . . . . . 6 (𝜑𝐹 ∈ V)
6 rnexg 7942 . . . . . 6 (𝐹 ∈ V → ran 𝐹 ∈ V)
75, 6syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ V)
8 frn 6754 . . . . . . 7 (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin)
9 dfss3 3997 . . . . . . 7 (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
108, 9sylib 218 . . . . . 6 (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin)
11 fict 9722 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1211ralimi 3089 . . . . . 6 (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
131, 10, 123syl 18 . . . . 5 (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω)
14 unidom 10612 . . . . 5 ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ran 𝐹 ≼ (ran 𝐹 × ω))
157, 13, 14syl2anc 583 . . . 4 (𝜑 ran 𝐹 ≼ (ran 𝐹 × ω))
16 fnrndomg 10605 . . . . . 6 (𝑇𝑉 → (𝐹 Fn 𝑇 → ran 𝐹𝑇))
173, 2, 16sylc 65 . . . . 5 (𝜑 → ran 𝐹𝑇)
18 omex 9712 . . . . . 6 ω ∈ V
1918xpdom1 9137 . . . . 5 (ran 𝐹𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
2017, 19syl 17 . . . 4 (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω))
21 domtr 9067 . . . 4 (( ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ran 𝐹 ≼ (𝑇 × ω))
2215, 20, 21syl2anc 583 . . 3 (𝜑 ran 𝐹 ≼ (𝑇 × ω))
23 unirnfdomd.2 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
24 infinf 10635 . . . . . 6 (𝑇𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
253, 24syl 17 . . . . 5 (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇))
2623, 25mpbid 232 . . . 4 (𝜑 → ω ≼ 𝑇)
27 xpdom2g 9134 . . . 4 ((𝑇𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇))
283, 26, 27syl2anc 583 . . 3 (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇))
29 domtr 9067 . . 3 (( ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ran 𝐹 ≼ (𝑇 × 𝑇))
3022, 28, 29syl2anc 583 . 2 (𝜑 ran 𝐹 ≼ (𝑇 × 𝑇))
31 infxpidm 10631 . . 3 (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇)
3226, 31syl 17 . 2 (𝜑 → (𝑇 × 𝑇) ≈ 𝑇)
33 domentr 9073 . 2 (( ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ran 𝐹𝑇)
3430, 32, 33syl2anc 583 1 (𝜑 ran 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108  wral 3067  Vcvv 3488  wss 3976   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701   Fn wfn 6568  wf 6569  ωcom 7903  cen 9000  cdom 9001  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by:  acsdomd  18627
  Copyright terms: Public domain W3C validator