| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnfdomd | Structured version Visualization version GIF version | ||
| Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unirnfdomd.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
| unirnfdomd.2 | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| unirnfdomd.3 | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| unirnfdomd | ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnfdomd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
| 2 | 1 | ffnd 6671 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
| 3 | unirnfdomd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 4 | fnex 7173 | . . . . . . 7 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉) → 𝐹 ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | rnexg 7858 | . . . . . 6 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ∈ V) |
| 8 | frn 6677 | . . . . . . 7 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
| 9 | dfss3 3932 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) |
| 11 | fict 9582 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
| 12 | 11 | ralimi 3066 | . . . . . 6 ⊢ (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 13 | 1, 10, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 14 | unidom 10472 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) | |
| 15 | 7, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) |
| 16 | fnrndomg 10465 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇)) | |
| 17 | 3, 2, 16 | sylc 65 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ≼ 𝑇) |
| 18 | omex 9572 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | 18 | xpdom1 9017 | . . . . 5 ⊢ (ran 𝐹 ≼ 𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 21 | domtr 8955 | . . . 4 ⊢ ((∪ ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ∪ ran 𝐹 ≼ (𝑇 × ω)) | |
| 22 | 15, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × ω)) |
| 23 | unirnfdomd.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | |
| 24 | infinf 10495 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) | |
| 25 | 3, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) |
| 26 | 23, 25 | mpbid 232 | . . . 4 ⊢ (𝜑 → ω ≼ 𝑇) |
| 27 | xpdom2g 9014 | . . . 4 ⊢ ((𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇)) | |
| 28 | 3, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇)) |
| 29 | domtr 8955 | . . 3 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) | |
| 30 | 22, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) |
| 31 | infxpidm 10491 | . . 3 ⊢ (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇) | |
| 32 | 26, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 × 𝑇) ≈ 𝑇) |
| 33 | domentr 8961 | . 2 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ∪ ran 𝐹 ≼ 𝑇) | |
| 34 | 30, 32, 33 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 × cxp 5629 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-card 9868 df-acn 9871 df-ac 10045 |
| This theorem is referenced by: acsdomd 18498 |
| Copyright terms: Public domain | W3C validator |