Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unirnfdomd | Structured version Visualization version GIF version |
Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unirnfdomd.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
unirnfdomd.2 | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
unirnfdomd.3 | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
unirnfdomd | ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnfdomd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
2 | 1 | ffnd 6585 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
3 | unirnfdomd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
4 | fnex 7075 | . . . . . . 7 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉) → 𝐹 ∈ V) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | rnexg 7725 | . . . . . 6 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ∈ V) |
8 | frn 6591 | . . . . . . 7 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
9 | dfss3 3905 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) | |
10 | 8, 9 | sylib 217 | . . . . . 6 ⊢ (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) |
11 | fict 9341 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
12 | 11 | ralimi 3086 | . . . . . 6 ⊢ (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
13 | 1, 10, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
14 | unidom 10230 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) | |
15 | 7, 13, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) |
16 | fnrndomg 10223 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇)) | |
17 | 3, 2, 16 | sylc 65 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ≼ 𝑇) |
18 | omex 9331 | . . . . . 6 ⊢ ω ∈ V | |
19 | 18 | xpdom1 8811 | . . . . 5 ⊢ (ran 𝐹 ≼ 𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
21 | domtr 8748 | . . . 4 ⊢ ((∪ ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ∪ ran 𝐹 ≼ (𝑇 × ω)) | |
22 | 15, 20, 21 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × ω)) |
23 | unirnfdomd.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | |
24 | infinf 10253 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) | |
25 | 3, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) |
26 | 23, 25 | mpbid 231 | . . . 4 ⊢ (𝜑 → ω ≼ 𝑇) |
27 | xpdom2g 8808 | . . . 4 ⊢ ((𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇)) | |
28 | 3, 26, 27 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇)) |
29 | domtr 8748 | . . 3 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) | |
30 | 22, 28, 29 | syl2anc 583 | . 2 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) |
31 | infxpidm 10249 | . . 3 ⊢ (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇) | |
32 | 26, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 × 𝑇) ≈ 𝑇) |
33 | domentr 8754 | . 2 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ∪ ran 𝐹 ≼ 𝑇) | |
34 | 30, 32, 33 | syl2anc 583 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 × cxp 5578 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 |
This theorem is referenced by: acsdomd 18190 |
Copyright terms: Public domain | W3C validator |