| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnfdomd | Structured version Visualization version GIF version | ||
| Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unirnfdomd.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
| unirnfdomd.2 | ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| unirnfdomd.3 | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| unirnfdomd | ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnfdomd.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
| 2 | 1 | ffnd 6652 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
| 3 | unirnfdomd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 4 | fnex 7151 | . . . . . . 7 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉) → 𝐹 ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | rnexg 7832 | . . . . . 6 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ∈ V) |
| 8 | frn 6658 | . . . . . . 7 ⊢ (𝐹:𝑇⟶Fin → ran 𝐹 ⊆ Fin) | |
| 9 | dfss3 3918 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ Fin ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) | |
| 10 | 8, 9 | sylib 218 | . . . . . 6 ⊢ (𝐹:𝑇⟶Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin) |
| 11 | fict 9543 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
| 12 | 11 | ralimi 3069 | . . . . . 6 ⊢ (∀𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 13 | 1, 10, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) |
| 14 | unidom 10434 | . . . . 5 ⊢ ((ran 𝐹 ∈ V ∧ ∀𝑥 ∈ ran 𝐹 𝑥 ≼ ω) → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) | |
| 15 | 7, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (ran 𝐹 × ω)) |
| 16 | fnrndomg 10427 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇)) | |
| 17 | 3, 2, 16 | sylc 65 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ≼ 𝑇) |
| 18 | omex 9533 | . . . . . 6 ⊢ ω ∈ V | |
| 19 | 18 | xpdom1 8989 | . . . . 5 ⊢ (ran 𝐹 ≼ 𝑇 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 20 | 17, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (ran 𝐹 × ω) ≼ (𝑇 × ω)) |
| 21 | domtr 8929 | . . . 4 ⊢ ((∪ ran 𝐹 ≼ (ran 𝐹 × ω) ∧ (ran 𝐹 × ω) ≼ (𝑇 × ω)) → ∪ ran 𝐹 ≼ (𝑇 × ω)) | |
| 22 | 15, 20, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × ω)) |
| 23 | unirnfdomd.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) | |
| 24 | infinf 10457 | . . . . . 6 ⊢ (𝑇 ∈ 𝑉 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) | |
| 25 | 3, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇)) |
| 26 | 23, 25 | mpbid 232 | . . . 4 ⊢ (𝜑 → ω ≼ 𝑇) |
| 27 | xpdom2g 8986 | . . . 4 ⊢ ((𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇) → (𝑇 × ω) ≼ (𝑇 × 𝑇)) | |
| 28 | 3, 26, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑇 × ω) ≼ (𝑇 × 𝑇)) |
| 29 | domtr 8929 | . . 3 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × ω) ∧ (𝑇 × ω) ≼ (𝑇 × 𝑇)) → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) | |
| 30 | 22, 28, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ ran 𝐹 ≼ (𝑇 × 𝑇)) |
| 31 | infxpidm 10453 | . . 3 ⊢ (ω ≼ 𝑇 → (𝑇 × 𝑇) ≈ 𝑇) | |
| 32 | 26, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 × 𝑇) ≈ 𝑇) |
| 33 | domentr 8935 | . 2 ⊢ ((∪ ran 𝐹 ≼ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ≈ 𝑇) → ∪ ran 𝐹 ≼ 𝑇) | |
| 34 | 30, 32, 33 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4856 class class class wbr 5089 × cxp 5612 ran crn 5615 Fn wfn 6476 ⟶wf 6477 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-card 9832 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: acsdomd 18463 |
| Copyright terms: Public domain | W3C validator |