Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2uni Structured version   Visualization version   GIF version

Theorem tpr2uni 31863
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on . (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypothesis
Ref Expression
tpr2tp.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
tpr2uni (𝐽 ×t 𝐽) = (ℝ × ℝ)

Proof of Theorem tpr2uni
StepHypRef Expression
1 tpr2tp.0 . . . 4 𝐽 = (topGen‘ran (,))
21tpr2tp 31862 . . 3 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
32toponunii 22075 . 2 (ℝ × ℝ) = (𝐽 ×t 𝐽)
43eqcomi 2747 1 (𝐽 ×t 𝐽) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   cuni 4839   × cxp 5582  ran crn 5585  cfv 6426  (class class class)co 7267  cr 10880  (,)cioo 13089  topGenctg 17158   ×t ctx 22721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-pre-lttri 10955  ax-pre-lttrn 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-po 5498  df-so 5499  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-1st 7820  df-2nd 7821  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-ioo 13093  df-topgen 17164  df-top 22053  df-topon 22070  df-bases 22106  df-tx 22723
This theorem is referenced by:  dya2iocnei  32257  sxbrsiga  32265
  Copyright terms: Public domain W3C validator