![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tpr2uni | Structured version Visualization version GIF version |
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
tpr2tp.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
tpr2uni | ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpr2tp.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | 1 | tpr2tp 33721 | . . 3 ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
3 | 2 | toponunii 22912 | . 2 ⊢ (ℝ × ℝ) = ∪ (𝐽 ×t 𝐽) |
4 | 3 | eqcomi 2735 | 1 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∪ cuni 4915 × cxp 5682 ran crn 5685 ‘cfv 6556 (class class class)co 7426 ℝcr 11159 (,)cioo 13380 topGenctg 17454 ×t ctx 23558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-pre-lttri 11234 ax-pre-lttrn 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-po 5596 df-so 5597 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8005 df-2nd 8006 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-ioo 13384 df-topgen 17460 df-top 22890 df-topon 22907 df-bases 22943 df-tx 23560 |
This theorem is referenced by: dya2iocnei 34118 sxbrsiga 34126 |
Copyright terms: Public domain | W3C validator |