Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tpr2uni | Structured version Visualization version GIF version |
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
tpr2tp.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
tpr2uni | ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpr2tp.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | 1 | tpr2tp 31862 | . . 3 ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) |
3 | 2 | toponunii 22075 | . 2 ⊢ (ℝ × ℝ) = ∪ (𝐽 ×t 𝐽) |
4 | 3 | eqcomi 2747 | 1 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cuni 4839 × cxp 5582 ran crn 5585 ‘cfv 6426 (class class class)co 7267 ℝcr 10880 (,)cioo 13089 topGenctg 17158 ×t ctx 22721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-pre-lttri 10955 ax-pre-lttrn 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-ioo 13093 df-topgen 17164 df-top 22053 df-topon 22070 df-bases 22106 df-tx 22723 |
This theorem is referenced by: dya2iocnei 32257 sxbrsiga 32265 |
Copyright terms: Public domain | W3C validator |