Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2uni Structured version   Visualization version   GIF version

Theorem tpr2uni 33904
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on . (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypothesis
Ref Expression
tpr2tp.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
tpr2uni (𝐽 ×t 𝐽) = (ℝ × ℝ)

Proof of Theorem tpr2uni
StepHypRef Expression
1 tpr2tp.0 . . . 4 𝐽 = (topGen‘ran (,))
21tpr2tp 33903 . . 3 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
32toponunii 22922 . 2 (ℝ × ℝ) = (𝐽 ×t 𝐽)
43eqcomi 2746 1 (𝐽 ×t 𝐽) = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   cuni 4907   × cxp 5683  ran crn 5686  cfv 6561  (class class class)co 7431  cr 11154  (,)cioo 13387  topGenctg 17482   ×t ctx 23568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-tx 23570
This theorem is referenced by:  dya2iocnei  34284  sxbrsiga  34292
  Copyright terms: Public domain W3C validator