MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapen Structured version   Visualization version   GIF version

Theorem xpmapen 8679
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
Assertion
Ref Expression
xpmapen ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))

Proof of Theorem xpmapen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2 𝐴 ∈ V
2 xpmapen.2 . 2 𝐵 ∈ V
3 xpmapen.3 . 2 𝐶 ∈ V
4 2fveq3 6669 . . 3 (𝑤 = 𝑧 → (1st ‘(𝑥𝑤)) = (1st ‘(𝑥𝑧)))
54cbvmptv 5161 . 2 (𝑤𝐶 ↦ (1st ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
6 2fveq3 6669 . . 3 (𝑤 = 𝑧 → (2nd ‘(𝑥𝑤)) = (2nd ‘(𝑥𝑧)))
76cbvmptv 5161 . 2 (𝑤𝐶 ↦ (2nd ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
8 fveq2 6664 . . . 4 (𝑤 = 𝑧 → ((1st𝑦)‘𝑤) = ((1st𝑦)‘𝑧))
9 fveq2 6664 . . . 4 (𝑤 = 𝑧 → ((2nd𝑦)‘𝑤) = ((2nd𝑦)‘𝑧))
108, 9opeq12d 4804 . . 3 (𝑤 = 𝑧 → ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩ = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
1110cbvmptv 5161 . 2 (𝑤𝐶 ↦ ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩) = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
121, 2, 3, 5, 7, 11xpmapenlem 8678 1 ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3494  cop 4566   class class class wbr 5058  cmpt 5138   × cxp 5547  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  m cmap 8400  cen 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-en 8504
This theorem is referenced by:  rexpen  15575
  Copyright terms: Public domain W3C validator