Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapen Structured version   Visualization version   GIF version

Theorem xpmapen 8397
 Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
Assertion
Ref Expression
xpmapen ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))

Proof of Theorem xpmapen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2 𝐴 ∈ V
2 xpmapen.2 . 2 𝐵 ∈ V
3 xpmapen.3 . 2 𝐶 ∈ V
4 2fveq3 6438 . . 3 (𝑤 = 𝑧 → (1st ‘(𝑥𝑤)) = (1st ‘(𝑥𝑧)))
54cbvmptv 4973 . 2 (𝑤𝐶 ↦ (1st ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
6 2fveq3 6438 . . 3 (𝑤 = 𝑧 → (2nd ‘(𝑥𝑤)) = (2nd ‘(𝑥𝑧)))
76cbvmptv 4973 . 2 (𝑤𝐶 ↦ (2nd ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
8 fveq2 6433 . . . 4 (𝑤 = 𝑧 → ((1st𝑦)‘𝑤) = ((1st𝑦)‘𝑧))
9 fveq2 6433 . . . 4 (𝑤 = 𝑧 → ((2nd𝑦)‘𝑤) = ((2nd𝑦)‘𝑧))
108, 9opeq12d 4631 . . 3 (𝑤 = 𝑧 → ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩ = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
1110cbvmptv 4973 . 2 (𝑤𝐶 ↦ ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩) = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
121, 2, 3, 5, 7, 11xpmapenlem 8396 1 ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2164  Vcvv 3414  ⟨cop 4403   class class class wbr 4873   ↦ cmpt 4952   × cxp 5340  ‘cfv 6123  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427   ↑𝑚 cmap 8122   ≈ cen 8219 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-map 8124  df-en 8223 This theorem is referenced by:  rexpen  15331
 Copyright terms: Public domain W3C validator