| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpmapen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpmapen.1 | ⊢ 𝐴 ∈ V |
| xpmapen.2 | ⊢ 𝐵 ∈ V |
| xpmapen.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| xpmapen | ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | 2fveq3 6827 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) | |
| 5 | 4 | cbvmptv 5193 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
| 6 | 2fveq3 6827 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) | |
| 7 | 6 | cbvmptv 5193 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
| 8 | fveq2 6822 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
| 9 | fveq2 6822 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
| 10 | 8, 9 | opeq12d 4830 | . . 3 ⊢ (𝑤 = 𝑧 → 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉 = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 11 | 10 | cbvmptv 5193 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉) = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 12 | 1, 2, 3, 5, 7, 11 | xpmapenlem 9057 | 1 ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-en 8870 |
| This theorem is referenced by: rexpen 16137 |
| Copyright terms: Public domain | W3C validator |