MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapen Structured version   Visualization version   GIF version

Theorem xpmapen 9062
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
Assertion
Ref Expression
xpmapen ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))

Proof of Theorem xpmapen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2 𝐴 ∈ V
2 xpmapen.2 . 2 𝐵 ∈ V
3 xpmapen.3 . 2 𝐶 ∈ V
4 2fveq3 6827 . . 3 (𝑤 = 𝑧 → (1st ‘(𝑥𝑤)) = (1st ‘(𝑥𝑧)))
54cbvmptv 5196 . 2 (𝑤𝐶 ↦ (1st ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
6 2fveq3 6827 . . 3 (𝑤 = 𝑧 → (2nd ‘(𝑥𝑤)) = (2nd ‘(𝑥𝑧)))
76cbvmptv 5196 . 2 (𝑤𝐶 ↦ (2nd ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
8 fveq2 6822 . . . 4 (𝑤 = 𝑧 → ((1st𝑦)‘𝑤) = ((1st𝑦)‘𝑧))
9 fveq2 6822 . . . 4 (𝑤 = 𝑧 → ((2nd𝑦)‘𝑤) = ((2nd𝑦)‘𝑧))
108, 9opeq12d 4832 . . 3 (𝑤 = 𝑧 → ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩ = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
1110cbvmptv 5196 . 2 (𝑤𝐶 ↦ ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩) = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
121, 2, 3, 5, 7, 11xpmapenlem 9061 1 ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴m 𝐶) × (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  m cmap 8753  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-en 8873
This theorem is referenced by:  rexpen  16137
  Copyright terms: Public domain W3C validator