| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpmapen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpmapen.1 | ⊢ 𝐴 ∈ V |
| xpmapen.2 | ⊢ 𝐵 ∈ V |
| xpmapen.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| xpmapen | ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | 2fveq3 6827 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) | |
| 5 | 4 | cbvmptv 5196 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
| 6 | 2fveq3 6827 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) | |
| 7 | 6 | cbvmptv 5196 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
| 8 | fveq2 6822 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
| 9 | fveq2 6822 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
| 10 | 8, 9 | opeq12d 4832 | . . 3 ⊢ (𝑤 = 𝑧 → 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉 = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 11 | 10 | cbvmptv 5196 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉) = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 12 | 1, 2, 3, 5, 7, 11 | xpmapenlem 9061 | 1 ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 〈cop 4583 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 ↑m cmap 8753 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-en 8873 |
| This theorem is referenced by: rexpen 16137 |
| Copyright terms: Public domain | W3C validator |