Proof of Theorem rexpen
Step | Hyp | Ref
| Expression |
1 | | rpnnen 15864 |
. . . . . 6
⊢ ℝ
≈ 𝒫 ℕ |
2 | | nnenom 13628 |
. . . . . . 7
⊢ ℕ
≈ ω |
3 | | pwen 8886 |
. . . . . . 7
⊢ (ℕ
≈ ω → 𝒫 ℕ ≈ 𝒫
ω) |
4 | 2, 3 | ax-mp 5 |
. . . . . 6
⊢ 𝒫
ℕ ≈ 𝒫 ω |
5 | 1, 4 | entri 8749 |
. . . . 5
⊢ ℝ
≈ 𝒫 ω |
6 | | omex 9331 |
. . . . . 6
⊢ ω
∈ V |
7 | 6 | pw2en 8819 |
. . . . 5
⊢ 𝒫
ω ≈ (2o ↑m ω) |
8 | 5, 7 | entri 8749 |
. . . 4
⊢ ℝ
≈ (2o ↑m ω) |
9 | | xpen 8876 |
. . . 4
⊢ ((ℝ
≈ (2o ↑m ω) ∧ ℝ ≈
(2o ↑m ω)) → (ℝ × ℝ)
≈ ((2o ↑m ω) × (2o
↑m ω))) |
10 | 8, 8, 9 | mp2an 688 |
. . 3
⊢ (ℝ
× ℝ) ≈ ((2o ↑m ω) ×
(2o ↑m ω)) |
11 | | 2onn 8433 |
. . . . . . . 8
⊢
2o ∈ ω |
12 | 11 | elexi 3441 |
. . . . . . 7
⊢
2o ∈ V |
13 | 12, 12, 6 | xpmapen 8881 |
. . . . . 6
⊢
((2o × 2o) ↑m ω)
≈ ((2o ↑m ω) × (2o
↑m ω)) |
14 | 13 | ensymi 8745 |
. . . . 5
⊢
((2o ↑m ω) × (2o
↑m ω)) ≈ ((2o × 2o)
↑m ω) |
15 | | ssid 3939 |
. . . . . . . . . . . . 13
⊢
2o ⊆ 2o |
16 | | ssnnfi 8914 |
. . . . . . . . . . . . 13
⊢
((2o ∈ ω ∧ 2o ⊆
2o) → 2o ∈ Fin) |
17 | 11, 15, 16 | mp2an 688 |
. . . . . . . . . . . 12
⊢
2o ∈ Fin |
18 | | xpfi 9015 |
. . . . . . . . . . . 12
⊢
((2o ∈ Fin ∧ 2o ∈ Fin) →
(2o × 2o) ∈ Fin) |
19 | 17, 17, 18 | mp2an 688 |
. . . . . . . . . . 11
⊢
(2o × 2o) ∈ Fin |
20 | | isfinite 9340 |
. . . . . . . . . . 11
⊢
((2o × 2o) ∈ Fin ↔ (2o
× 2o) ≺ ω) |
21 | 19, 20 | mpbi 229 |
. . . . . . . . . 10
⊢
(2o × 2o) ≺ ω |
22 | 6 | canth2 8866 |
. . . . . . . . . 10
⊢ ω
≺ 𝒫 ω |
23 | | sdomtr 8851 |
. . . . . . . . . 10
⊢
(((2o × 2o) ≺ ω ∧ ω
≺ 𝒫 ω) → (2o × 2o) ≺
𝒫 ω) |
24 | 21, 22, 23 | mp2an 688 |
. . . . . . . . 9
⊢
(2o × 2o) ≺ 𝒫
ω |
25 | | sdomdom 8723 |
. . . . . . . . 9
⊢
((2o × 2o) ≺ 𝒫 ω →
(2o × 2o) ≼ 𝒫
ω) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . 8
⊢
(2o × 2o) ≼ 𝒫
ω |
27 | | domentr 8754 |
. . . . . . . 8
⊢
(((2o × 2o) ≼ 𝒫 ω ∧
𝒫 ω ≈ (2o ↑m ω)) →
(2o × 2o) ≼ (2o ↑m
ω)) |
28 | 26, 7, 27 | mp2an 688 |
. . . . . . 7
⊢
(2o × 2o) ≼ (2o
↑m ω) |
29 | | mapdom1 8878 |
. . . . . . 7
⊢
((2o × 2o) ≼ (2o
↑m ω) → ((2o × 2o)
↑m ω) ≼ ((2o ↑m ω)
↑m ω)) |
30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢
((2o × 2o) ↑m ω)
≼ ((2o ↑m ω) ↑m
ω) |
31 | | mapxpen 8879 |
. . . . . . . 8
⊢
((2o ∈ ω ∧ ω ∈ V ∧ ω
∈ V) → ((2o ↑m ω) ↑m
ω) ≈ (2o ↑m (ω ×
ω))) |
32 | 11, 6, 6, 31 | mp3an 1459 |
. . . . . . 7
⊢
((2o ↑m ω) ↑m ω)
≈ (2o ↑m (ω ×
ω)) |
33 | 12 | enref 8728 |
. . . . . . . 8
⊢
2o ≈ 2o |
34 | | xpomen 9702 |
. . . . . . . 8
⊢ (ω
× ω) ≈ ω |
35 | | mapen 8877 |
. . . . . . . 8
⊢
((2o ≈ 2o ∧ (ω × ω)
≈ ω) → (2o ↑m (ω ×
ω)) ≈ (2o ↑m ω)) |
36 | 33, 34, 35 | mp2an 688 |
. . . . . . 7
⊢
(2o ↑m (ω × ω)) ≈
(2o ↑m ω) |
37 | 32, 36 | entri 8749 |
. . . . . 6
⊢
((2o ↑m ω) ↑m ω)
≈ (2o ↑m ω) |
38 | | domentr 8754 |
. . . . . 6
⊢
((((2o × 2o) ↑m ω)
≼ ((2o ↑m ω) ↑m ω)
∧ ((2o ↑m ω) ↑m ω)
≈ (2o ↑m ω)) → ((2o
× 2o) ↑m ω) ≼ (2o
↑m ω)) |
39 | 30, 37, 38 | mp2an 688 |
. . . . 5
⊢
((2o × 2o) ↑m ω)
≼ (2o ↑m ω) |
40 | | endomtr 8753 |
. . . . 5
⊢
((((2o ↑m ω) × (2o
↑m ω)) ≈ ((2o × 2o)
↑m ω) ∧ ((2o × 2o)
↑m ω) ≼ (2o ↑m ω))
→ ((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m
ω)) |
41 | 14, 39, 40 | mp2an 688 |
. . . 4
⊢
((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m
ω) |
42 | | ovex 7288 |
. . . . . . 7
⊢
(2o ↑m ω) ∈ V |
43 | | 0ex 5226 |
. . . . . . 7
⊢ ∅
∈ V |
44 | 42, 43 | xpsnen 8796 |
. . . . . 6
⊢
((2o ↑m ω) × {∅}) ≈
(2o ↑m ω) |
45 | 44 | ensymi 8745 |
. . . . 5
⊢
(2o ↑m ω) ≈ ((2o
↑m ω) × {∅}) |
46 | | snfi 8788 |
. . . . . . . . . 10
⊢ {∅}
∈ Fin |
47 | | isfinite 9340 |
. . . . . . . . . 10
⊢
({∅} ∈ Fin ↔ {∅} ≺ ω) |
48 | 46, 47 | mpbi 229 |
. . . . . . . . 9
⊢ {∅}
≺ ω |
49 | | sdomtr 8851 |
. . . . . . . . 9
⊢
(({∅} ≺ ω ∧ ω ≺ 𝒫 ω)
→ {∅} ≺ 𝒫 ω) |
50 | 48, 22, 49 | mp2an 688 |
. . . . . . . 8
⊢ {∅}
≺ 𝒫 ω |
51 | | sdomdom 8723 |
. . . . . . . 8
⊢
({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫
ω) |
52 | 50, 51 | ax-mp 5 |
. . . . . . 7
⊢ {∅}
≼ 𝒫 ω |
53 | | domentr 8754 |
. . . . . . 7
⊢
(({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈
(2o ↑m ω)) → {∅} ≼
(2o ↑m ω)) |
54 | 52, 7, 53 | mp2an 688 |
. . . . . 6
⊢ {∅}
≼ (2o ↑m ω) |
55 | 42 | xpdom2 8807 |
. . . . . 6
⊢
({∅} ≼ (2o ↑m ω) →
((2o ↑m ω) × {∅}) ≼
((2o ↑m ω) × (2o
↑m ω))) |
56 | 54, 55 | ax-mp 5 |
. . . . 5
⊢
((2o ↑m ω) × {∅}) ≼
((2o ↑m ω) × (2o
↑m ω)) |
57 | | endomtr 8753 |
. . . . 5
⊢
(((2o ↑m ω) ≈ ((2o
↑m ω) × {∅}) ∧ ((2o
↑m ω) × {∅}) ≼ ((2o
↑m ω) × (2o ↑m
ω))) → (2o ↑m ω) ≼
((2o ↑m ω) × (2o
↑m ω))) |
58 | 45, 56, 57 | mp2an 688 |
. . . 4
⊢
(2o ↑m ω) ≼ ((2o
↑m ω) × (2o ↑m
ω)) |
59 | | sbth 8833 |
. . . 4
⊢
((((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m ω)
∧ (2o ↑m ω) ≼ ((2o
↑m ω) × (2o ↑m
ω))) → ((2o ↑m ω) ×
(2o ↑m ω)) ≈ (2o
↑m ω)) |
60 | 41, 58, 59 | mp2an 688 |
. . 3
⊢
((2o ↑m ω) × (2o
↑m ω)) ≈ (2o ↑m
ω) |
61 | 10, 60 | entri 8749 |
. 2
⊢ (ℝ
× ℝ) ≈ (2o ↑m
ω) |
62 | 61, 8 | entr4i 8752 |
1
⊢ (ℝ
× ℝ) ≈ ℝ |