MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Visualization version   GIF version

Theorem rexpen 16139
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that is well-orderable (so we cannot use infxpidm2 9915 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen (ℝ × ℝ) ≈ ℝ

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 16138 . . . . . 6 ℝ ≈ 𝒫 ℕ
2 nnenom 13889 . . . . . . 7 ℕ ≈ ω
3 pwen 9070 . . . . . . 7 (ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω)
42, 3ax-mp 5 . . . . . 6 𝒫 ℕ ≈ 𝒫 ω
51, 4entri 8937 . . . . 5 ℝ ≈ 𝒫 ω
6 omex 9540 . . . . . 6 ω ∈ V
76pw2en 9004 . . . . 5 𝒫 ω ≈ (2om ω)
85, 7entri 8937 . . . 4 ℝ ≈ (2om ω)
9 xpen 9060 . . . 4 ((ℝ ≈ (2om ω) ∧ ℝ ≈ (2om ω)) → (ℝ × ℝ) ≈ ((2om ω) × (2om ω)))
108, 8, 9mp2an 692 . . 3 (ℝ × ℝ) ≈ ((2om ω) × (2om ω))
11 2onn 8563 . . . . . . . 8 2o ∈ ω
1211elexi 3460 . . . . . . 7 2o ∈ V
1312, 12, 6xpmapen 9065 . . . . . 6 ((2o × 2o) ↑m ω) ≈ ((2om ω) × (2om ω))
1413ensymi 8933 . . . . 5 ((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω)
15 ssid 3953 . . . . . . . . . . . . 13 2o ⊆ 2o
16 ssnnfi 9086 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
1711, 15, 16mp2an 692 . . . . . . . . . . . 12 2o ∈ Fin
18 xpfi 9211 . . . . . . . . . . . 12 ((2o ∈ Fin ∧ 2o ∈ Fin) → (2o × 2o) ∈ Fin)
1917, 17, 18mp2an 692 . . . . . . . . . . 11 (2o × 2o) ∈ Fin
20 isfinite 9549 . . . . . . . . . . 11 ((2o × 2o) ∈ Fin ↔ (2o × 2o) ≺ ω)
2119, 20mpbi 230 . . . . . . . . . 10 (2o × 2o) ≺ ω
226canth2 9050 . . . . . . . . . 10 ω ≺ 𝒫 ω
23 sdomtr 9035 . . . . . . . . . 10 (((2o × 2o) ≺ ω ∧ ω ≺ 𝒫 ω) → (2o × 2o) ≺ 𝒫 ω)
2421, 22, 23mp2an 692 . . . . . . . . 9 (2o × 2o) ≺ 𝒫 ω
25 sdomdom 8909 . . . . . . . . 9 ((2o × 2o) ≺ 𝒫 ω → (2o × 2o) ≼ 𝒫 ω)
2624, 25ax-mp 5 . . . . . . . 8 (2o × 2o) ≼ 𝒫 ω
27 domentr 8942 . . . . . . . 8 (((2o × 2o) ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → (2o × 2o) ≼ (2om ω))
2826, 7, 27mp2an 692 . . . . . . 7 (2o × 2o) ≼ (2om ω)
29 mapdom1 9062 . . . . . . 7 ((2o × 2o) ≼ (2om ω) → ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω))
3028, 29ax-mp 5 . . . . . 6 ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω)
31 mapxpen 9063 . . . . . . . 8 ((2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V) → ((2om ω) ↑m ω) ≈ (2om (ω × ω)))
3211, 6, 6, 31mp3an 1463 . . . . . . 7 ((2om ω) ↑m ω) ≈ (2om (ω × ω))
3312enref 8914 . . . . . . . 8 2o ≈ 2o
34 xpomen 9913 . . . . . . . 8 (ω × ω) ≈ ω
35 mapen 9061 . . . . . . . 8 ((2o ≈ 2o ∧ (ω × ω) ≈ ω) → (2om (ω × ω)) ≈ (2om ω))
3633, 34, 35mp2an 692 . . . . . . 7 (2om (ω × ω)) ≈ (2om ω)
3732, 36entri 8937 . . . . . 6 ((2om ω) ↑m ω) ≈ (2om ω)
38 domentr 8942 . . . . . 6 ((((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω) ∧ ((2om ω) ↑m ω) ≈ (2om ω)) → ((2o × 2o) ↑m ω) ≼ (2om ω))
3930, 37, 38mp2an 692 . . . . 5 ((2o × 2o) ↑m ω) ≼ (2om ω)
40 endomtr 8941 . . . . 5 ((((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω) ∧ ((2o × 2o) ↑m ω) ≼ (2om ω)) → ((2om ω) × (2om ω)) ≼ (2om ω))
4114, 39, 40mp2an 692 . . . 4 ((2om ω) × (2om ω)) ≼ (2om ω)
42 ovex 7385 . . . . . . 7 (2om ω) ∈ V
43 0ex 5247 . . . . . . 7 ∅ ∈ V
4442, 43xpsnen 8981 . . . . . 6 ((2om ω) × {∅}) ≈ (2om ω)
4544ensymi 8933 . . . . 5 (2om ω) ≈ ((2om ω) × {∅})
46 snfi 8972 . . . . . . . . . 10 {∅} ∈ Fin
47 isfinite 9549 . . . . . . . . . 10 ({∅} ∈ Fin ↔ {∅} ≺ ω)
4846, 47mpbi 230 . . . . . . . . 9 {∅} ≺ ω
49 sdomtr 9035 . . . . . . . . 9 (({∅} ≺ ω ∧ ω ≺ 𝒫 ω) → {∅} ≺ 𝒫 ω)
5048, 22, 49mp2an 692 . . . . . . . 8 {∅} ≺ 𝒫 ω
51 sdomdom 8909 . . . . . . . 8 ({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫 ω)
5250, 51ax-mp 5 . . . . . . 7 {∅} ≼ 𝒫 ω
53 domentr 8942 . . . . . . 7 (({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → {∅} ≼ (2om ω))
5452, 7, 53mp2an 692 . . . . . 6 {∅} ≼ (2om ω)
5542xpdom2 8992 . . . . . 6 ({∅} ≼ (2om ω) → ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω)))
5654, 55ax-mp 5 . . . . 5 ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))
57 endomtr 8941 . . . . 5 (((2om ω) ≈ ((2om ω) × {∅}) ∧ ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))) → (2om ω) ≼ ((2om ω) × (2om ω)))
5845, 56, 57mp2an 692 . . . 4 (2om ω) ≼ ((2om ω) × (2om ω))
59 sbth 9017 . . . 4 ((((2om ω) × (2om ω)) ≼ (2om ω) ∧ (2om ω) ≼ ((2om ω) × (2om ω))) → ((2om ω) × (2om ω)) ≈ (2om ω))
6041, 58, 59mp2an 692 . . 3 ((2om ω) × (2om ω)) ≈ (2om ω)
6110, 60entri 8937 . 2 (ℝ × ℝ) ≈ (2om ω)
6261, 8entr4i 8940 1 (ℝ × ℝ) ≈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093   × cxp 5617  (class class class)co 7352  ωcom 7802  2oc2o 8385  m cmap 8756  cen 8872  cdom 8873  csdm 8874  Fincfn 8875  cr 11012  cn 12132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596
This theorem is referenced by:  cpnnen  16140
  Copyright terms: Public domain W3C validator