MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Visualization version   GIF version

Theorem rexpen 15180
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that is well-orderable (so we cannot use infxpidm2 9126 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen (ℝ × ℝ) ≈ ℝ

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 15179 . . . . . 6 ℝ ≈ 𝒫 ℕ
2 nnenom 13006 . . . . . . 7 ℕ ≈ ω
3 pwen 8375 . . . . . . 7 (ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω)
42, 3ax-mp 5 . . . . . 6 𝒫 ℕ ≈ 𝒫 ω
51, 4entri 8249 . . . . 5 ℝ ≈ 𝒫 ω
6 omex 8790 . . . . . 6 ω ∈ V
76pw2en 8309 . . . . 5 𝒫 ω ≈ (2𝑜𝑚 ω)
85, 7entri 8249 . . . 4 ℝ ≈ (2𝑜𝑚 ω)
9 xpen 8365 . . . 4 ((ℝ ≈ (2𝑜𝑚 ω) ∧ ℝ ≈ (2𝑜𝑚 ω)) → (ℝ × ℝ) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
108, 8, 9mp2an 675 . . 3 (ℝ × ℝ) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
11 2onn 7960 . . . . . . . 8 2𝑜 ∈ ω
1211elexi 3414 . . . . . . 7 2𝑜 ∈ V
1312, 12, 6xpmapen 8370 . . . . . 6 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
1413ensymi 8245 . . . . 5 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ ((2𝑜 × 2𝑜) ↑𝑚 ω)
15 ssid 3827 . . . . . . . . . . . . 13 2𝑜 ⊆ 2𝑜
16 ssnnfi 8421 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 2𝑜 ⊆ 2𝑜) → 2𝑜 ∈ Fin)
1711, 15, 16mp2an 675 . . . . . . . . . . . 12 2𝑜 ∈ Fin
18 xpfi 8473 . . . . . . . . . . . 12 ((2𝑜 ∈ Fin ∧ 2𝑜 ∈ Fin) → (2𝑜 × 2𝑜) ∈ Fin)
1917, 17, 18mp2an 675 . . . . . . . . . . 11 (2𝑜 × 2𝑜) ∈ Fin
20 isfinite 8799 . . . . . . . . . . 11 ((2𝑜 × 2𝑜) ∈ Fin ↔ (2𝑜 × 2𝑜) ≺ ω)
2119, 20mpbi 221 . . . . . . . . . 10 (2𝑜 × 2𝑜) ≺ ω
226canth2 8355 . . . . . . . . . 10 ω ≺ 𝒫 ω
23 sdomtr 8340 . . . . . . . . . 10 (((2𝑜 × 2𝑜) ≺ ω ∧ ω ≺ 𝒫 ω) → (2𝑜 × 2𝑜) ≺ 𝒫 ω)
2421, 22, 23mp2an 675 . . . . . . . . 9 (2𝑜 × 2𝑜) ≺ 𝒫 ω
25 sdomdom 8223 . . . . . . . . 9 ((2𝑜 × 2𝑜) ≺ 𝒫 ω → (2𝑜 × 2𝑜) ≼ 𝒫 ω)
2624, 25ax-mp 5 . . . . . . . 8 (2𝑜 × 2𝑜) ≼ 𝒫 ω
27 domentr 8254 . . . . . . . 8 (((2𝑜 × 2𝑜) ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2𝑜𝑚 ω)) → (2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω))
2826, 7, 27mp2an 675 . . . . . . 7 (2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω)
29 mapdom1 8367 . . . . . . 7 ((2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω) → ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω))
3028, 29ax-mp 5 . . . . . 6 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω)
31 mapxpen 8368 . . . . . . . 8 ((2𝑜 ∈ ω ∧ ω ∈ V ∧ ω ∈ V) → ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 (ω × ω)))
3211, 6, 6, 31mp3an 1578 . . . . . . 7 ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 (ω × ω))
3312enref 8228 . . . . . . . 8 2𝑜 ≈ 2𝑜
34 xpomen 9124 . . . . . . . 8 (ω × ω) ≈ ω
35 mapen 8366 . . . . . . . 8 ((2𝑜 ≈ 2𝑜 ∧ (ω × ω) ≈ ω) → (2𝑜𝑚 (ω × ω)) ≈ (2𝑜𝑚 ω))
3633, 34, 35mp2an 675 . . . . . . 7 (2𝑜𝑚 (ω × ω)) ≈ (2𝑜𝑚 ω)
3732, 36entri 8249 . . . . . 6 ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 ω)
38 domentr 8254 . . . . . 6 ((((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω) ∧ ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 ω)) → ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω))
3930, 37, 38mp2an 675 . . . . 5 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω)
40 endomtr 8253 . . . . 5 ((((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ ((2𝑜 × 2𝑜) ↑𝑚 ω) ∧ ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω)) → ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω))
4114, 39, 40mp2an 675 . . . 4 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω)
42 ovex 6909 . . . . . . 7 (2𝑜𝑚 ω) ∈ V
43 0ex 4991 . . . . . . 7 ∅ ∈ V
4442, 43xpsnen 8286 . . . . . 6 ((2𝑜𝑚 ω) × {∅}) ≈ (2𝑜𝑚 ω)
4544ensymi 8245 . . . . 5 (2𝑜𝑚 ω) ≈ ((2𝑜𝑚 ω) × {∅})
46 snfi 8280 . . . . . . . . . 10 {∅} ∈ Fin
47 isfinite 8799 . . . . . . . . . 10 ({∅} ∈ Fin ↔ {∅} ≺ ω)
4846, 47mpbi 221 . . . . . . . . 9 {∅} ≺ ω
49 sdomtr 8340 . . . . . . . . 9 (({∅} ≺ ω ∧ ω ≺ 𝒫 ω) → {∅} ≺ 𝒫 ω)
5048, 22, 49mp2an 675 . . . . . . . 8 {∅} ≺ 𝒫 ω
51 sdomdom 8223 . . . . . . . 8 ({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫 ω)
5250, 51ax-mp 5 . . . . . . 7 {∅} ≼ 𝒫 ω
53 domentr 8254 . . . . . . 7 (({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2𝑜𝑚 ω)) → {∅} ≼ (2𝑜𝑚 ω))
5452, 7, 53mp2an 675 . . . . . 6 {∅} ≼ (2𝑜𝑚 ω)
5542xpdom2 8297 . . . . . 6 ({∅} ≼ (2𝑜𝑚 ω) → ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
5654, 55ax-mp 5 . . . . 5 ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
57 endomtr 8253 . . . . 5 (((2𝑜𝑚 ω) ≈ ((2𝑜𝑚 ω) × {∅}) ∧ ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))) → (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
5845, 56, 57mp2an 675 . . . 4 (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
59 sbth 8322 . . . 4 ((((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω) ∧ (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))) → ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ (2𝑜𝑚 ω))
6041, 58, 59mp2an 675 . . 3 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ (2𝑜𝑚 ω)
6110, 60entri 8249 . 2 (ℝ × ℝ) ≈ (2𝑜𝑚 ω)
6261, 8entr4i 8252 1 (ℝ × ℝ) ≈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2157  Vcvv 3398  wss 3776  c0 4123  𝒫 cpw 4358  {csn 4377   class class class wbr 4851   × cxp 5316  (class class class)co 6877  ωcom 7298  2𝑜c2o 7793  𝑚 cmap 8095  cen 8192  cdom 8193  csdm 8194  Fincfn 8195  cr 10223  cn 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-ico 12402  df-icc 12403  df-fz 12553  df-fzo 12693  df-fl 12820  df-seq 13028  df-exp 13087  df-hash 13341  df-cj 14065  df-re 14066  df-im 14067  df-sqrt 14201  df-abs 14202  df-limsup 14428  df-clim 14445  df-rlim 14446  df-sum 14643
This theorem is referenced by:  cpnnen  15181
  Copyright terms: Public domain W3C validator