Proof of Theorem rexpen
| Step | Hyp | Ref
| Expression |
| 1 | | rpnnen 16245 |
. . . . . 6
⊢ ℝ
≈ 𝒫 ℕ |
| 2 | | nnenom 13998 |
. . . . . . 7
⊢ ℕ
≈ ω |
| 3 | | pwen 9164 |
. . . . . . 7
⊢ (ℕ
≈ ω → 𝒫 ℕ ≈ 𝒫
ω) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . 6
⊢ 𝒫
ℕ ≈ 𝒫 ω |
| 5 | 1, 4 | entri 9022 |
. . . . 5
⊢ ℝ
≈ 𝒫 ω |
| 6 | | omex 9657 |
. . . . . 6
⊢ ω
∈ V |
| 7 | 6 | pw2en 9093 |
. . . . 5
⊢ 𝒫
ω ≈ (2o ↑m ω) |
| 8 | 5, 7 | entri 9022 |
. . . 4
⊢ ℝ
≈ (2o ↑m ω) |
| 9 | | xpen 9154 |
. . . 4
⊢ ((ℝ
≈ (2o ↑m ω) ∧ ℝ ≈
(2o ↑m ω)) → (ℝ × ℝ)
≈ ((2o ↑m ω) × (2o
↑m ω))) |
| 10 | 8, 8, 9 | mp2an 692 |
. . 3
⊢ (ℝ
× ℝ) ≈ ((2o ↑m ω) ×
(2o ↑m ω)) |
| 11 | | 2onn 8654 |
. . . . . . . 8
⊢
2o ∈ ω |
| 12 | 11 | elexi 3482 |
. . . . . . 7
⊢
2o ∈ V |
| 13 | 12, 12, 6 | xpmapen 9159 |
. . . . . 6
⊢
((2o × 2o) ↑m ω)
≈ ((2o ↑m ω) × (2o
↑m ω)) |
| 14 | 13 | ensymi 9018 |
. . . . 5
⊢
((2o ↑m ω) × (2o
↑m ω)) ≈ ((2o × 2o)
↑m ω) |
| 15 | | ssid 3981 |
. . . . . . . . . . . . 13
⊢
2o ⊆ 2o |
| 16 | | ssnnfi 9183 |
. . . . . . . . . . . . 13
⊢
((2o ∈ ω ∧ 2o ⊆
2o) → 2o ∈ Fin) |
| 17 | 11, 15, 16 | mp2an 692 |
. . . . . . . . . . . 12
⊢
2o ∈ Fin |
| 18 | | xpfi 9330 |
. . . . . . . . . . . 12
⊢
((2o ∈ Fin ∧ 2o ∈ Fin) →
(2o × 2o) ∈ Fin) |
| 19 | 17, 17, 18 | mp2an 692 |
. . . . . . . . . . 11
⊢
(2o × 2o) ∈ Fin |
| 20 | | isfinite 9666 |
. . . . . . . . . . 11
⊢
((2o × 2o) ∈ Fin ↔ (2o
× 2o) ≺ ω) |
| 21 | 19, 20 | mpbi 230 |
. . . . . . . . . 10
⊢
(2o × 2o) ≺ ω |
| 22 | 6 | canth2 9144 |
. . . . . . . . . 10
⊢ ω
≺ 𝒫 ω |
| 23 | | sdomtr 9129 |
. . . . . . . . . 10
⊢
(((2o × 2o) ≺ ω ∧ ω
≺ 𝒫 ω) → (2o × 2o) ≺
𝒫 ω) |
| 24 | 21, 22, 23 | mp2an 692 |
. . . . . . . . 9
⊢
(2o × 2o) ≺ 𝒫
ω |
| 25 | | sdomdom 8994 |
. . . . . . . . 9
⊢
((2o × 2o) ≺ 𝒫 ω →
(2o × 2o) ≼ 𝒫
ω) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . . 8
⊢
(2o × 2o) ≼ 𝒫
ω |
| 27 | | domentr 9027 |
. . . . . . . 8
⊢
(((2o × 2o) ≼ 𝒫 ω ∧
𝒫 ω ≈ (2o ↑m ω)) →
(2o × 2o) ≼ (2o ↑m
ω)) |
| 28 | 26, 7, 27 | mp2an 692 |
. . . . . . 7
⊢
(2o × 2o) ≼ (2o
↑m ω) |
| 29 | | mapdom1 9156 |
. . . . . . 7
⊢
((2o × 2o) ≼ (2o
↑m ω) → ((2o × 2o)
↑m ω) ≼ ((2o ↑m ω)
↑m ω)) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢
((2o × 2o) ↑m ω)
≼ ((2o ↑m ω) ↑m
ω) |
| 31 | | mapxpen 9157 |
. . . . . . . 8
⊢
((2o ∈ ω ∧ ω ∈ V ∧ ω
∈ V) → ((2o ↑m ω) ↑m
ω) ≈ (2o ↑m (ω ×
ω))) |
| 32 | 11, 6, 6, 31 | mp3an 1463 |
. . . . . . 7
⊢
((2o ↑m ω) ↑m ω)
≈ (2o ↑m (ω ×
ω)) |
| 33 | 12 | enref 8999 |
. . . . . . . 8
⊢
2o ≈ 2o |
| 34 | | xpomen 10029 |
. . . . . . . 8
⊢ (ω
× ω) ≈ ω |
| 35 | | mapen 9155 |
. . . . . . . 8
⊢
((2o ≈ 2o ∧ (ω × ω)
≈ ω) → (2o ↑m (ω ×
ω)) ≈ (2o ↑m ω)) |
| 36 | 33, 34, 35 | mp2an 692 |
. . . . . . 7
⊢
(2o ↑m (ω × ω)) ≈
(2o ↑m ω) |
| 37 | 32, 36 | entri 9022 |
. . . . . 6
⊢
((2o ↑m ω) ↑m ω)
≈ (2o ↑m ω) |
| 38 | | domentr 9027 |
. . . . . 6
⊢
((((2o × 2o) ↑m ω)
≼ ((2o ↑m ω) ↑m ω)
∧ ((2o ↑m ω) ↑m ω)
≈ (2o ↑m ω)) → ((2o
× 2o) ↑m ω) ≼ (2o
↑m ω)) |
| 39 | 30, 37, 38 | mp2an 692 |
. . . . 5
⊢
((2o × 2o) ↑m ω)
≼ (2o ↑m ω) |
| 40 | | endomtr 9026 |
. . . . 5
⊢
((((2o ↑m ω) × (2o
↑m ω)) ≈ ((2o × 2o)
↑m ω) ∧ ((2o × 2o)
↑m ω) ≼ (2o ↑m ω))
→ ((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m
ω)) |
| 41 | 14, 39, 40 | mp2an 692 |
. . . 4
⊢
((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m
ω) |
| 42 | | ovex 7438 |
. . . . . . 7
⊢
(2o ↑m ω) ∈ V |
| 43 | | 0ex 5277 |
. . . . . . 7
⊢ ∅
∈ V |
| 44 | 42, 43 | xpsnen 9069 |
. . . . . 6
⊢
((2o ↑m ω) × {∅}) ≈
(2o ↑m ω) |
| 45 | 44 | ensymi 9018 |
. . . . 5
⊢
(2o ↑m ω) ≈ ((2o
↑m ω) × {∅}) |
| 46 | | snfi 9057 |
. . . . . . . . . 10
⊢ {∅}
∈ Fin |
| 47 | | isfinite 9666 |
. . . . . . . . . 10
⊢
({∅} ∈ Fin ↔ {∅} ≺ ω) |
| 48 | 46, 47 | mpbi 230 |
. . . . . . . . 9
⊢ {∅}
≺ ω |
| 49 | | sdomtr 9129 |
. . . . . . . . 9
⊢
(({∅} ≺ ω ∧ ω ≺ 𝒫 ω)
→ {∅} ≺ 𝒫 ω) |
| 50 | 48, 22, 49 | mp2an 692 |
. . . . . . . 8
⊢ {∅}
≺ 𝒫 ω |
| 51 | | sdomdom 8994 |
. . . . . . . 8
⊢
({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫
ω) |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . 7
⊢ {∅}
≼ 𝒫 ω |
| 53 | | domentr 9027 |
. . . . . . 7
⊢
(({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈
(2o ↑m ω)) → {∅} ≼
(2o ↑m ω)) |
| 54 | 52, 7, 53 | mp2an 692 |
. . . . . 6
⊢ {∅}
≼ (2o ↑m ω) |
| 55 | 42 | xpdom2 9081 |
. . . . . 6
⊢
({∅} ≼ (2o ↑m ω) →
((2o ↑m ω) × {∅}) ≼
((2o ↑m ω) × (2o
↑m ω))) |
| 56 | 54, 55 | ax-mp 5 |
. . . . 5
⊢
((2o ↑m ω) × {∅}) ≼
((2o ↑m ω) × (2o
↑m ω)) |
| 57 | | endomtr 9026 |
. . . . 5
⊢
(((2o ↑m ω) ≈ ((2o
↑m ω) × {∅}) ∧ ((2o
↑m ω) × {∅}) ≼ ((2o
↑m ω) × (2o ↑m
ω))) → (2o ↑m ω) ≼
((2o ↑m ω) × (2o
↑m ω))) |
| 58 | 45, 56, 57 | mp2an 692 |
. . . 4
⊢
(2o ↑m ω) ≼ ((2o
↑m ω) × (2o ↑m
ω)) |
| 59 | | sbth 9107 |
. . . 4
⊢
((((2o ↑m ω) × (2o
↑m ω)) ≼ (2o ↑m ω)
∧ (2o ↑m ω) ≼ ((2o
↑m ω) × (2o ↑m
ω))) → ((2o ↑m ω) ×
(2o ↑m ω)) ≈ (2o
↑m ω)) |
| 60 | 41, 58, 59 | mp2an 692 |
. . 3
⊢
((2o ↑m ω) × (2o
↑m ω)) ≈ (2o ↑m
ω) |
| 61 | 10, 60 | entri 9022 |
. 2
⊢ (ℝ
× ℝ) ≈ (2o ↑m
ω) |
| 62 | 61, 8 | entr4i 9025 |
1
⊢ (ℝ
× ℝ) ≈ ℝ |