MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Visualization version   GIF version

Theorem rexpen 16155
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that is well-orderable (so we cannot use infxpidm2 9930 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen (ℝ × ℝ) ≈ ℝ

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 16154 . . . . . 6 ℝ ≈ 𝒫 ℕ
2 nnenom 13905 . . . . . . 7 ℕ ≈ ω
3 pwen 9074 . . . . . . 7 (ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω)
42, 3ax-mp 5 . . . . . 6 𝒫 ℕ ≈ 𝒫 ω
51, 4entri 8940 . . . . 5 ℝ ≈ 𝒫 ω
6 omex 9558 . . . . . 6 ω ∈ V
76pw2en 9008 . . . . 5 𝒫 ω ≈ (2om ω)
85, 7entri 8940 . . . 4 ℝ ≈ (2om ω)
9 xpen 9064 . . . 4 ((ℝ ≈ (2om ω) ∧ ℝ ≈ (2om ω)) → (ℝ × ℝ) ≈ ((2om ω) × (2om ω)))
108, 8, 9mp2an 692 . . 3 (ℝ × ℝ) ≈ ((2om ω) × (2om ω))
11 2onn 8567 . . . . . . . 8 2o ∈ ω
1211elexi 3461 . . . . . . 7 2o ∈ V
1312, 12, 6xpmapen 9069 . . . . . 6 ((2o × 2o) ↑m ω) ≈ ((2om ω) × (2om ω))
1413ensymi 8936 . . . . 5 ((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω)
15 ssid 3960 . . . . . . . . . . . . 13 2o ⊆ 2o
16 ssnnfi 9093 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
1711, 15, 16mp2an 692 . . . . . . . . . . . 12 2o ∈ Fin
18 xpfi 9227 . . . . . . . . . . . 12 ((2o ∈ Fin ∧ 2o ∈ Fin) → (2o × 2o) ∈ Fin)
1917, 17, 18mp2an 692 . . . . . . . . . . 11 (2o × 2o) ∈ Fin
20 isfinite 9567 . . . . . . . . . . 11 ((2o × 2o) ∈ Fin ↔ (2o × 2o) ≺ ω)
2119, 20mpbi 230 . . . . . . . . . 10 (2o × 2o) ≺ ω
226canth2 9054 . . . . . . . . . 10 ω ≺ 𝒫 ω
23 sdomtr 9039 . . . . . . . . . 10 (((2o × 2o) ≺ ω ∧ ω ≺ 𝒫 ω) → (2o × 2o) ≺ 𝒫 ω)
2421, 22, 23mp2an 692 . . . . . . . . 9 (2o × 2o) ≺ 𝒫 ω
25 sdomdom 8912 . . . . . . . . 9 ((2o × 2o) ≺ 𝒫 ω → (2o × 2o) ≼ 𝒫 ω)
2624, 25ax-mp 5 . . . . . . . 8 (2o × 2o) ≼ 𝒫 ω
27 domentr 8945 . . . . . . . 8 (((2o × 2o) ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → (2o × 2o) ≼ (2om ω))
2826, 7, 27mp2an 692 . . . . . . 7 (2o × 2o) ≼ (2om ω)
29 mapdom1 9066 . . . . . . 7 ((2o × 2o) ≼ (2om ω) → ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω))
3028, 29ax-mp 5 . . . . . 6 ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω)
31 mapxpen 9067 . . . . . . . 8 ((2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V) → ((2om ω) ↑m ω) ≈ (2om (ω × ω)))
3211, 6, 6, 31mp3an 1463 . . . . . . 7 ((2om ω) ↑m ω) ≈ (2om (ω × ω))
3312enref 8917 . . . . . . . 8 2o ≈ 2o
34 xpomen 9928 . . . . . . . 8 (ω × ω) ≈ ω
35 mapen 9065 . . . . . . . 8 ((2o ≈ 2o ∧ (ω × ω) ≈ ω) → (2om (ω × ω)) ≈ (2om ω))
3633, 34, 35mp2an 692 . . . . . . 7 (2om (ω × ω)) ≈ (2om ω)
3732, 36entri 8940 . . . . . 6 ((2om ω) ↑m ω) ≈ (2om ω)
38 domentr 8945 . . . . . 6 ((((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω) ∧ ((2om ω) ↑m ω) ≈ (2om ω)) → ((2o × 2o) ↑m ω) ≼ (2om ω))
3930, 37, 38mp2an 692 . . . . 5 ((2o × 2o) ↑m ω) ≼ (2om ω)
40 endomtr 8944 . . . . 5 ((((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω) ∧ ((2o × 2o) ↑m ω) ≼ (2om ω)) → ((2om ω) × (2om ω)) ≼ (2om ω))
4114, 39, 40mp2an 692 . . . 4 ((2om ω) × (2om ω)) ≼ (2om ω)
42 ovex 7386 . . . . . . 7 (2om ω) ∈ V
43 0ex 5249 . . . . . . 7 ∅ ∈ V
4442, 43xpsnen 8985 . . . . . 6 ((2om ω) × {∅}) ≈ (2om ω)
4544ensymi 8936 . . . . 5 (2om ω) ≈ ((2om ω) × {∅})
46 snfi 8975 . . . . . . . . . 10 {∅} ∈ Fin
47 isfinite 9567 . . . . . . . . . 10 ({∅} ∈ Fin ↔ {∅} ≺ ω)
4846, 47mpbi 230 . . . . . . . . 9 {∅} ≺ ω
49 sdomtr 9039 . . . . . . . . 9 (({∅} ≺ ω ∧ ω ≺ 𝒫 ω) → {∅} ≺ 𝒫 ω)
5048, 22, 49mp2an 692 . . . . . . . 8 {∅} ≺ 𝒫 ω
51 sdomdom 8912 . . . . . . . 8 ({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫 ω)
5250, 51ax-mp 5 . . . . . . 7 {∅} ≼ 𝒫 ω
53 domentr 8945 . . . . . . 7 (({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → {∅} ≼ (2om ω))
5452, 7, 53mp2an 692 . . . . . 6 {∅} ≼ (2om ω)
5542xpdom2 8996 . . . . . 6 ({∅} ≼ (2om ω) → ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω)))
5654, 55ax-mp 5 . . . . 5 ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))
57 endomtr 8944 . . . . 5 (((2om ω) ≈ ((2om ω) × {∅}) ∧ ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))) → (2om ω) ≼ ((2om ω) × (2om ω)))
5845, 56, 57mp2an 692 . . . 4 (2om ω) ≼ ((2om ω) × (2om ω))
59 sbth 9021 . . . 4 ((((2om ω) × (2om ω)) ≼ (2om ω) ∧ (2om ω) ≼ ((2om ω) × (2om ω))) → ((2om ω) × (2om ω)) ≈ (2om ω))
6041, 58, 59mp2an 692 . . 3 ((2om ω) × (2om ω)) ≈ (2om ω)
6110, 60entri 8940 . 2 (ℝ × ℝ) ≈ (2om ω)
6261, 8entr4i 8943 1 (ℝ × ℝ) ≈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095   × cxp 5621  (class class class)co 7353  ωcom 7806  2oc2o 8389  m cmap 8760  cen 8876  cdom 8877  csdm 8878  Fincfn 8879  cr 11027  cn 12146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612
This theorem is referenced by:  cpnnen  16156
  Copyright terms: Public domain W3C validator