MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Visualization version   GIF version

Theorem rexpen 16196
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that is well-orderable (so we cannot use infxpidm2 9970 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen (ℝ × ℝ) ≈ ℝ

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 16195 . . . . . 6 ℝ ≈ 𝒫 ℕ
2 nnenom 13945 . . . . . . 7 ℕ ≈ ω
3 pwen 9114 . . . . . . 7 (ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω)
42, 3ax-mp 5 . . . . . 6 𝒫 ℕ ≈ 𝒫 ω
51, 4entri 8979 . . . . 5 ℝ ≈ 𝒫 ω
6 omex 9596 . . . . . 6 ω ∈ V
76pw2en 9048 . . . . 5 𝒫 ω ≈ (2om ω)
85, 7entri 8979 . . . 4 ℝ ≈ (2om ω)
9 xpen 9104 . . . 4 ((ℝ ≈ (2om ω) ∧ ℝ ≈ (2om ω)) → (ℝ × ℝ) ≈ ((2om ω) × (2om ω)))
108, 8, 9mp2an 692 . . 3 (ℝ × ℝ) ≈ ((2om ω) × (2om ω))
11 2onn 8606 . . . . . . . 8 2o ∈ ω
1211elexi 3470 . . . . . . 7 2o ∈ V
1312, 12, 6xpmapen 9109 . . . . . 6 ((2o × 2o) ↑m ω) ≈ ((2om ω) × (2om ω))
1413ensymi 8975 . . . . 5 ((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω)
15 ssid 3969 . . . . . . . . . . . . 13 2o ⊆ 2o
16 ssnnfi 9133 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 2o ⊆ 2o) → 2o ∈ Fin)
1711, 15, 16mp2an 692 . . . . . . . . . . . 12 2o ∈ Fin
18 xpfi 9269 . . . . . . . . . . . 12 ((2o ∈ Fin ∧ 2o ∈ Fin) → (2o × 2o) ∈ Fin)
1917, 17, 18mp2an 692 . . . . . . . . . . 11 (2o × 2o) ∈ Fin
20 isfinite 9605 . . . . . . . . . . 11 ((2o × 2o) ∈ Fin ↔ (2o × 2o) ≺ ω)
2119, 20mpbi 230 . . . . . . . . . 10 (2o × 2o) ≺ ω
226canth2 9094 . . . . . . . . . 10 ω ≺ 𝒫 ω
23 sdomtr 9079 . . . . . . . . . 10 (((2o × 2o) ≺ ω ∧ ω ≺ 𝒫 ω) → (2o × 2o) ≺ 𝒫 ω)
2421, 22, 23mp2an 692 . . . . . . . . 9 (2o × 2o) ≺ 𝒫 ω
25 sdomdom 8951 . . . . . . . . 9 ((2o × 2o) ≺ 𝒫 ω → (2o × 2o) ≼ 𝒫 ω)
2624, 25ax-mp 5 . . . . . . . 8 (2o × 2o) ≼ 𝒫 ω
27 domentr 8984 . . . . . . . 8 (((2o × 2o) ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → (2o × 2o) ≼ (2om ω))
2826, 7, 27mp2an 692 . . . . . . 7 (2o × 2o) ≼ (2om ω)
29 mapdom1 9106 . . . . . . 7 ((2o × 2o) ≼ (2om ω) → ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω))
3028, 29ax-mp 5 . . . . . 6 ((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω)
31 mapxpen 9107 . . . . . . . 8 ((2o ∈ ω ∧ ω ∈ V ∧ ω ∈ V) → ((2om ω) ↑m ω) ≈ (2om (ω × ω)))
3211, 6, 6, 31mp3an 1463 . . . . . . 7 ((2om ω) ↑m ω) ≈ (2om (ω × ω))
3312enref 8956 . . . . . . . 8 2o ≈ 2o
34 xpomen 9968 . . . . . . . 8 (ω × ω) ≈ ω
35 mapen 9105 . . . . . . . 8 ((2o ≈ 2o ∧ (ω × ω) ≈ ω) → (2om (ω × ω)) ≈ (2om ω))
3633, 34, 35mp2an 692 . . . . . . 7 (2om (ω × ω)) ≈ (2om ω)
3732, 36entri 8979 . . . . . 6 ((2om ω) ↑m ω) ≈ (2om ω)
38 domentr 8984 . . . . . 6 ((((2o × 2o) ↑m ω) ≼ ((2om ω) ↑m ω) ∧ ((2om ω) ↑m ω) ≈ (2om ω)) → ((2o × 2o) ↑m ω) ≼ (2om ω))
3930, 37, 38mp2an 692 . . . . 5 ((2o × 2o) ↑m ω) ≼ (2om ω)
40 endomtr 8983 . . . . 5 ((((2om ω) × (2om ω)) ≈ ((2o × 2o) ↑m ω) ∧ ((2o × 2o) ↑m ω) ≼ (2om ω)) → ((2om ω) × (2om ω)) ≼ (2om ω))
4114, 39, 40mp2an 692 . . . 4 ((2om ω) × (2om ω)) ≼ (2om ω)
42 ovex 7420 . . . . . . 7 (2om ω) ∈ V
43 0ex 5262 . . . . . . 7 ∅ ∈ V
4442, 43xpsnen 9025 . . . . . 6 ((2om ω) × {∅}) ≈ (2om ω)
4544ensymi 8975 . . . . 5 (2om ω) ≈ ((2om ω) × {∅})
46 snfi 9014 . . . . . . . . . 10 {∅} ∈ Fin
47 isfinite 9605 . . . . . . . . . 10 ({∅} ∈ Fin ↔ {∅} ≺ ω)
4846, 47mpbi 230 . . . . . . . . 9 {∅} ≺ ω
49 sdomtr 9079 . . . . . . . . 9 (({∅} ≺ ω ∧ ω ≺ 𝒫 ω) → {∅} ≺ 𝒫 ω)
5048, 22, 49mp2an 692 . . . . . . . 8 {∅} ≺ 𝒫 ω
51 sdomdom 8951 . . . . . . . 8 ({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫 ω)
5250, 51ax-mp 5 . . . . . . 7 {∅} ≼ 𝒫 ω
53 domentr 8984 . . . . . . 7 (({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2om ω)) → {∅} ≼ (2om ω))
5452, 7, 53mp2an 692 . . . . . 6 {∅} ≼ (2om ω)
5542xpdom2 9036 . . . . . 6 ({∅} ≼ (2om ω) → ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω)))
5654, 55ax-mp 5 . . . . 5 ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))
57 endomtr 8983 . . . . 5 (((2om ω) ≈ ((2om ω) × {∅}) ∧ ((2om ω) × {∅}) ≼ ((2om ω) × (2om ω))) → (2om ω) ≼ ((2om ω) × (2om ω)))
5845, 56, 57mp2an 692 . . . 4 (2om ω) ≼ ((2om ω) × (2om ω))
59 sbth 9061 . . . 4 ((((2om ω) × (2om ω)) ≼ (2om ω) ∧ (2om ω) ≼ ((2om ω) × (2om ω))) → ((2om ω) × (2om ω)) ≈ (2om ω))
6041, 58, 59mp2an 692 . . 3 ((2om ω) × (2om ω)) ≈ (2om ω)
6110, 60entri 8979 . 2 (ℝ × ℝ) ≈ (2om ω)
6261, 8entr4i 8982 1 (ℝ × ℝ) ≈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107   × cxp 5636  (class class class)co 7387  ωcom 7842  2oc2o 8428  m cmap 8799  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  cr 11067  cn 12186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  cpnnen  16197
  Copyright terms: Public domain W3C validator