ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc Unicode version

Theorem zdvdsdc 12065
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  ZZ )
21znegcld 9496 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  ZZ )
3 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  <  0 )
41zred 9494 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  RR )
54lt0neg1d 8587 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  <  0  <->  0  <  -u M
) )
63, 5mpbid 147 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  0  <  -u M )
7 elnnz 9381 . . . . 5  |-  ( -u M  e.  NN  <->  ( -u M  e.  ZZ  /\  0  <  -u M ) )
82, 6, 7sylanbrc 417 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  NN )
9 simplr 528 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  N  e.  ZZ )
10 dvdsdc 12051 . . . 4  |-  ( (
-u M  e.  NN  /\  N  e.  ZZ )  -> DECID  -u M  ||  N )
118, 9, 10syl2anc 411 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  -u M  ||  N
)
12 negdvdsb 12060 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  -u M  ||  N ) )
1312adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  ||  N  <->  -u M  ||  N
) )
1413dcbid 839 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  (DECID  M  ||  N  <-> DECID  -u M  ||  N ) )
1511, 14mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  M  ||  N )
16 0z 9382 . . . . 5  |-  0  e.  ZZ
17 zdceq 9447 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1816, 17mpan2 425 . . . 4  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
1918ad2antlr 489 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  N  =  0
)
20 breq1 4046 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
2120adantl 277 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  0  ||  N
) )
22 0dvds 12064 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
2322ad2antlr 489 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( 0 
||  N  <->  N  = 
0 ) )
2421, 23bitrd 188 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  N  =  0
) )
2524dcbid 839 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  (DECID  M  ||  N  <-> DECID  N  =  0 ) )
2619, 25mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  M  ||  N )
27 simpll 527 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  ZZ )
28 simpr 110 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  0  <  M )
29 elnnz 9381 . . . 4  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3027, 28, 29sylanbrc 417 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  NN )
31 simplr 528 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  N  e.  ZZ )
32 dvdsdc 12051 . . 3  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M 
||  N )
3330, 31, 32syl2anc 411 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  -> DECID  M  ||  N )
34 ztri3or0 9413 . . 3  |-  ( M  e.  ZZ  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3534adantr 276 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3615, 26, 33, 35mpjao3dan 1319 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    \/ w3o 979    = wceq 1372    e. wcel 2175   class class class wbr 4043   0cc0 7924    < clt 8106   -ucneg 8243   NNcn 9035   ZZcz 9371    || cdvds 12040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-fl 10411  df-mod 10466  df-dvds 12041
This theorem is referenced by:  lcmval  12327  lcmcllem  12331  lcmledvds  12334  phiprmpw  12486  pclemdc  12553  pc2dvds  12595  unennn  12710
  Copyright terms: Public domain W3C validator