ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc Unicode version

Theorem zdvdsdc 11503
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 518 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  ZZ )
21znegcld 9168 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  ZZ )
3 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  <  0 )
41zred 9166 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  RR )
54lt0neg1d 8270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  <  0  <->  0  <  -u M
) )
63, 5mpbid 146 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  0  <  -u M )
7 elnnz 9057 . . . . 5  |-  ( -u M  e.  NN  <->  ( -u M  e.  ZZ  /\  0  <  -u M ) )
82, 6, 7sylanbrc 413 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  NN )
9 simplr 519 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  N  e.  ZZ )
10 dvdsdc 11490 . . . 4  |-  ( (
-u M  e.  NN  /\  N  e.  ZZ )  -> DECID  -u M  ||  N )
118, 9, 10syl2anc 408 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  -u M  ||  N
)
12 negdvdsb 11498 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  -u M  ||  N ) )
1312adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  ||  N  <->  -u M  ||  N
) )
1413dcbid 823 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  (DECID  M  ||  N  <-> DECID  -u M  ||  N ) )
1511, 14mpbird 166 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  M  ||  N )
16 0z 9058 . . . . 5  |-  0  e.  ZZ
17 zdceq 9119 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1816, 17mpan2 421 . . . 4  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
1918ad2antlr 480 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  N  =  0
)
20 breq1 3927 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
2120adantl 275 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  0  ||  N
) )
22 0dvds 11502 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
2322ad2antlr 480 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( 0 
||  N  <->  N  = 
0 ) )
2421, 23bitrd 187 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  N  =  0
) )
2524dcbid 823 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  (DECID  M  ||  N  <-> DECID  N  =  0 ) )
2619, 25mpbird 166 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  M  ||  N )
27 simpll 518 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  ZZ )
28 simpr 109 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  0  <  M )
29 elnnz 9057 . . . 4  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3027, 28, 29sylanbrc 413 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  NN )
31 simplr 519 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  N  e.  ZZ )
32 dvdsdc 11490 . . 3  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M 
||  N )
3330, 31, 32syl2anc 408 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  -> DECID  M  ||  N )
34 ztri3or0 9089 . . 3  |-  ( M  e.  ZZ  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3534adantr 274 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3615, 26, 33, 35mpjao3dan 1285 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    \/ w3o 961    = wceq 1331    e. wcel 1480   class class class wbr 3924   0cc0 7613    < clt 7793   -ucneg 7927   NNcn 8713   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089  df-dvds 11483
This theorem is referenced by:  lcmval  11733  lcmcllem  11737  lcmledvds  11740  phiprmpw  11887  unennn  11899
  Copyright terms: Public domain W3C validator