ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdvdsdc Unicode version

Theorem zdvdsdc 11818
Description: Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
Assertion
Ref Expression
zdvdsdc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )

Proof of Theorem zdvdsdc
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  ZZ )
21znegcld 9376 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  ZZ )
3 simpr 110 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  <  0 )
41zred 9374 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  M  e.  RR )
54lt0neg1d 8471 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  <  0  <->  0  <  -u M
) )
63, 5mpbid 147 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  0  <  -u M )
7 elnnz 9262 . . . . 5  |-  ( -u M  e.  NN  <->  ( -u M  e.  ZZ  /\  0  <  -u M ) )
82, 6, 7sylanbrc 417 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  -u M  e.  NN )
9 simplr 528 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  N  e.  ZZ )
10 dvdsdc 11804 . . . 4  |-  ( (
-u M  e.  NN  /\  N  e.  ZZ )  -> DECID  -u M  ||  N )
118, 9, 10syl2anc 411 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  -u M  ||  N
)
12 negdvdsb 11813 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  -u M  ||  N ) )
1312adantr 276 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  ( M  ||  N  <->  -u M  ||  N
) )
1413dcbid 838 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  ->  (DECID  M  ||  N  <-> DECID  -u M  ||  N ) )
1511, 14mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <  0
)  -> DECID  M  ||  N )
16 0z 9263 . . . . 5  |-  0  e.  ZZ
17 zdceq 9327 . . . . 5  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1816, 17mpan2 425 . . . 4  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
1918ad2antlr 489 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  N  =  0
)
20 breq1 4006 . . . . . 6  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
2120adantl 277 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  0  ||  N
) )
22 0dvds 11817 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
2322ad2antlr 489 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( 0 
||  N  <->  N  = 
0 ) )
2421, 23bitrd 188 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M  ||  N  <->  N  =  0
) )
2524dcbid 838 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  (DECID  M  ||  N  <-> DECID  N  =  0 ) )
2619, 25mpbird 167 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> DECID  M  ||  N )
27 simpll 527 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  ZZ )
28 simpr 110 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  0  <  M )
29 elnnz 9262 . . . 4  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3027, 28, 29sylanbrc 417 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  M  e.  NN )
31 simplr 528 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  ->  N  e.  ZZ )
32 dvdsdc 11804 . . 3  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M 
||  N )
3330, 31, 32syl2anc 411 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  0  <  M
)  -> DECID  M  ||  N )
34 ztri3or0 9294 . . 3  |-  ( M  e.  ZZ  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3534adantr 276 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  0  \/  M  =  0  \/  0  <  M ) )
3615, 26, 33, 35mpjao3dan 1307 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M 
||  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4003   0cc0 7810    < clt 7991   -ucneg 8128   NNcn 8918   ZZcz 9252    || cdvds 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-q 9619  df-rp 9653  df-fl 10269  df-mod 10322  df-dvds 11794
This theorem is referenced by:  lcmval  12062  lcmcllem  12066  lcmledvds  12069  phiprmpw  12221  pclemdc  12287  pc2dvds  12328  unennn  12397
  Copyright terms: Public domain W3C validator