ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq GIF version

Theorem appdivnq 7625
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → 𝐴 <Q 𝐵)
2 ltrelnq 7427 . . . . . . . 8 <Q ⊆ (Q × Q)
32brel 4712 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
43adantr 276 . . . . . 6 ((𝐴 <Q 𝐵𝐶Q) → (𝐴Q𝐵Q))
54simpld 112 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐴Q)
64simprd 114 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐵Q)
7 recclnq 7454 . . . . . 6 (𝐶Q → (*Q𝐶) ∈ Q)
87adantl 277 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → (*Q𝐶) ∈ Q)
9 ltmnqg 7463 . . . . 5 ((𝐴Q𝐵Q ∧ (*Q𝐶) ∈ Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
105, 6, 8, 9syl3anc 1249 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
111, 10mpbid 147 . . 3 ((𝐴 <Q 𝐵𝐶Q) → ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵))
12 ltbtwnnqq 7477 . . 3 (((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵) ↔ ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
1311, 12sylib 122 . 2 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
148adantr 276 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (*Q𝐶) ∈ Q)
155adantr 276 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐴Q)
16 mulclnq 7438 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐴Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
1714, 15, 16syl2anc 411 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
18 simpr 110 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝑚Q)
19 simplr 528 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐶Q)
20 ltmnqg 7463 . . . . . . . 8 ((((*Q𝐶) ·Q 𝐴) ∈ Q𝑚Q𝐶Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
2117, 18, 19, 20syl3anc 1249 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
22 recidnq 7455 . . . . . . . . . . 11 (𝐶Q → (𝐶 ·Q (*Q𝐶)) = 1Q)
2322oveq1d 5934 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
2423ad2antlr 489 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
25 mulassnqg 7446 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐴Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
2619, 14, 15, 25syl3anc 1249 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
27 1nq 7428 . . . . . . . . . . . 12 1QQ
28 mulcomnqg 7445 . . . . . . . . . . . 12 ((1QQ𝐴Q) → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
2927, 28mpan 424 . . . . . . . . . . 11 (𝐴Q → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
30 mulidnq 7451 . . . . . . . . . . 11 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3129, 30eqtrd 2226 . . . . . . . . . 10 (𝐴Q → (1Q ·Q 𝐴) = 𝐴)
3215, 31syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐴) = 𝐴)
3324, 26, 323eqtr3d 2234 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) = 𝐴)
3433breq1d 4040 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝐶 ·Q 𝑚)))
3521, 34bitrd 188 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝐴 <Q (𝐶 ·Q 𝑚)))
366adantr 276 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐵Q)
37 mulclnq 7438 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐵Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
3814, 36, 37syl2anc 411 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
39 ltmnqg 7463 . . . . . . . 8 ((𝑚Q ∧ ((*Q𝐶) ·Q 𝐵) ∈ Q𝐶Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4018, 38, 19, 39syl3anc 1249 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4122oveq1d 5934 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
4241ad2antlr 489 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
43 mulassnqg 7446 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐵Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
4419, 14, 36, 43syl3anc 1249 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
45 mulcomnqg 7445 . . . . . . . . . . . 12 ((1QQ𝐵Q) → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
4627, 45mpan 424 . . . . . . . . . . 11 (𝐵Q → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
47 mulidnq 7451 . . . . . . . . . . 11 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
4846, 47eqtrd 2226 . . . . . . . . . 10 (𝐵Q → (1Q ·Q 𝐵) = 𝐵)
4936, 48syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐵) = 𝐵)
5042, 44, 493eqtr3d 2234 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) = 𝐵)
5150breq2d 4042 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5240, 51bitrd 188 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5335, 52anbi12d 473 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵)))
54 mulcomnqg 7445 . . . . . . . 8 ((𝐶Q𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5519, 18, 54syl2anc 411 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5655breq2d 4042 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐴 <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝑚 ·Q 𝐶)))
5755breq1d 4040 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q 𝐵 ↔ (𝑚 ·Q 𝐶) <Q 𝐵))
5856, 57anbi12d 473 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
5953, 58bitrd 188 . . . 4 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6059biimpd 144 . . 3 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6160reximdva 2596 . 2 ((𝐴 <Q 𝐵𝐶Q) → (∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6213, 61mpd 13 1 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  cfv 5255  (class class class)co 5919  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345  *Qcrq 7346   <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  appdiv0nq  7626  mullocpr  7633
  Copyright terms: Public domain W3C validator