ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq GIF version

Theorem appdivnq 7525
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → 𝐴 <Q 𝐵)
2 ltrelnq 7327 . . . . . . . 8 <Q ⊆ (Q × Q)
32brel 4663 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
43adantr 274 . . . . . 6 ((𝐴 <Q 𝐵𝐶Q) → (𝐴Q𝐵Q))
54simpld 111 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐴Q)
64simprd 113 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐵Q)
7 recclnq 7354 . . . . . 6 (𝐶Q → (*Q𝐶) ∈ Q)
87adantl 275 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → (*Q𝐶) ∈ Q)
9 ltmnqg 7363 . . . . 5 ((𝐴Q𝐵Q ∧ (*Q𝐶) ∈ Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
105, 6, 8, 9syl3anc 1233 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
111, 10mpbid 146 . . 3 ((𝐴 <Q 𝐵𝐶Q) → ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵))
12 ltbtwnnqq 7377 . . 3 (((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵) ↔ ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
1311, 12sylib 121 . 2 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
148adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (*Q𝐶) ∈ Q)
155adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐴Q)
16 mulclnq 7338 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐴Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
1714, 15, 16syl2anc 409 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
18 simpr 109 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝑚Q)
19 simplr 525 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐶Q)
20 ltmnqg 7363 . . . . . . . 8 ((((*Q𝐶) ·Q 𝐴) ∈ Q𝑚Q𝐶Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
2117, 18, 19, 20syl3anc 1233 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
22 recidnq 7355 . . . . . . . . . . 11 (𝐶Q → (𝐶 ·Q (*Q𝐶)) = 1Q)
2322oveq1d 5868 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
2423ad2antlr 486 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
25 mulassnqg 7346 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐴Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
2619, 14, 15, 25syl3anc 1233 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
27 1nq 7328 . . . . . . . . . . . 12 1QQ
28 mulcomnqg 7345 . . . . . . . . . . . 12 ((1QQ𝐴Q) → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
2927, 28mpan 422 . . . . . . . . . . 11 (𝐴Q → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
30 mulidnq 7351 . . . . . . . . . . 11 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3129, 30eqtrd 2203 . . . . . . . . . 10 (𝐴Q → (1Q ·Q 𝐴) = 𝐴)
3215, 31syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐴) = 𝐴)
3324, 26, 323eqtr3d 2211 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) = 𝐴)
3433breq1d 3999 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝐶 ·Q 𝑚)))
3521, 34bitrd 187 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝐴 <Q (𝐶 ·Q 𝑚)))
366adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐵Q)
37 mulclnq 7338 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐵Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
3814, 36, 37syl2anc 409 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
39 ltmnqg 7363 . . . . . . . 8 ((𝑚Q ∧ ((*Q𝐶) ·Q 𝐵) ∈ Q𝐶Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4018, 38, 19, 39syl3anc 1233 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4122oveq1d 5868 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
4241ad2antlr 486 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
43 mulassnqg 7346 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐵Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
4419, 14, 36, 43syl3anc 1233 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
45 mulcomnqg 7345 . . . . . . . . . . . 12 ((1QQ𝐵Q) → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
4627, 45mpan 422 . . . . . . . . . . 11 (𝐵Q → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
47 mulidnq 7351 . . . . . . . . . . 11 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
4846, 47eqtrd 2203 . . . . . . . . . 10 (𝐵Q → (1Q ·Q 𝐵) = 𝐵)
4936, 48syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐵) = 𝐵)
5042, 44, 493eqtr3d 2211 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) = 𝐵)
5150breq2d 4001 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5240, 51bitrd 187 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5335, 52anbi12d 470 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵)))
54 mulcomnqg 7345 . . . . . . . 8 ((𝐶Q𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5519, 18, 54syl2anc 409 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5655breq2d 4001 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐴 <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝑚 ·Q 𝐶)))
5755breq1d 3999 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q 𝐵 ↔ (𝑚 ·Q 𝐶) <Q 𝐵))
5856, 57anbi12d 470 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
5953, 58bitrd 187 . . . 4 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6059biimpd 143 . . 3 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6160reximdva 2572 . 2 ((𝐴 <Q 𝐵𝐶Q) → (∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6213, 61mpd 13 1 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  Qcnq 7242  1Qc1q 7243   ·Q cmq 7245  *Qcrq 7246   <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315
This theorem is referenced by:  appdiv0nq  7526  mullocpr  7533
  Copyright terms: Public domain W3C validator