ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq GIF version

Theorem appdivnq 7371
Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → 𝐴 <Q 𝐵)
2 ltrelnq 7173 . . . . . . . 8 <Q ⊆ (Q × Q)
32brel 4591 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
43adantr 274 . . . . . 6 ((𝐴 <Q 𝐵𝐶Q) → (𝐴Q𝐵Q))
54simpld 111 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐴Q)
64simprd 113 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐵Q)
7 recclnq 7200 . . . . . 6 (𝐶Q → (*Q𝐶) ∈ Q)
87adantl 275 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → (*Q𝐶) ∈ Q)
9 ltmnqg 7209 . . . . 5 ((𝐴Q𝐵Q ∧ (*Q𝐶) ∈ Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
105, 6, 8, 9syl3anc 1216 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
111, 10mpbid 146 . . 3 ((𝐴 <Q 𝐵𝐶Q) → ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵))
12 ltbtwnnqq 7223 . . 3 (((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵) ↔ ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
1311, 12sylib 121 . 2 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
148adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (*Q𝐶) ∈ Q)
155adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐴Q)
16 mulclnq 7184 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐴Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
1714, 15, 16syl2anc 408 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
18 simpr 109 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝑚Q)
19 simplr 519 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐶Q)
20 ltmnqg 7209 . . . . . . . 8 ((((*Q𝐶) ·Q 𝐴) ∈ Q𝑚Q𝐶Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
2117, 18, 19, 20syl3anc 1216 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
22 recidnq 7201 . . . . . . . . . . 11 (𝐶Q → (𝐶 ·Q (*Q𝐶)) = 1Q)
2322oveq1d 5789 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
2423ad2antlr 480 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
25 mulassnqg 7192 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐴Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
2619, 14, 15, 25syl3anc 1216 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
27 1nq 7174 . . . . . . . . . . . 12 1QQ
28 mulcomnqg 7191 . . . . . . . . . . . 12 ((1QQ𝐴Q) → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
2927, 28mpan 420 . . . . . . . . . . 11 (𝐴Q → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
30 mulidnq 7197 . . . . . . . . . . 11 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3129, 30eqtrd 2172 . . . . . . . . . 10 (𝐴Q → (1Q ·Q 𝐴) = 𝐴)
3215, 31syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐴) = 𝐴)
3324, 26, 323eqtr3d 2180 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) = 𝐴)
3433breq1d 3939 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝐶 ·Q 𝑚)))
3521, 34bitrd 187 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝐴 <Q (𝐶 ·Q 𝑚)))
366adantr 274 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐵Q)
37 mulclnq 7184 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐵Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
3814, 36, 37syl2anc 408 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
39 ltmnqg 7209 . . . . . . . 8 ((𝑚Q ∧ ((*Q𝐶) ·Q 𝐵) ∈ Q𝐶Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4018, 38, 19, 39syl3anc 1216 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4122oveq1d 5789 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
4241ad2antlr 480 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
43 mulassnqg 7192 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐵Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
4419, 14, 36, 43syl3anc 1216 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
45 mulcomnqg 7191 . . . . . . . . . . . 12 ((1QQ𝐵Q) → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
4627, 45mpan 420 . . . . . . . . . . 11 (𝐵Q → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
47 mulidnq 7197 . . . . . . . . . . 11 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
4846, 47eqtrd 2172 . . . . . . . . . 10 (𝐵Q → (1Q ·Q 𝐵) = 𝐵)
4936, 48syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐵) = 𝐵)
5042, 44, 493eqtr3d 2180 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) = 𝐵)
5150breq2d 3941 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5240, 51bitrd 187 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5335, 52anbi12d 464 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵)))
54 mulcomnqg 7191 . . . . . . . 8 ((𝐶Q𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5519, 18, 54syl2anc 408 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5655breq2d 3941 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐴 <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝑚 ·Q 𝐶)))
5755breq1d 3939 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q 𝐵 ↔ (𝑚 ·Q 𝐶) <Q 𝐵))
5856, 57anbi12d 464 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
5953, 58bitrd 187 . . . 4 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6059biimpd 143 . . 3 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6160reximdva 2534 . 2 ((𝐴 <Q 𝐵𝐶Q) → (∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6213, 61mpd 13 1 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  Qcnq 7088  1Qc1q 7089   ·Q cmq 7091  *Qcrq 7092   <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161
This theorem is referenced by:  appdiv0nq  7372  mullocpr  7379
  Copyright terms: Public domain W3C validator