Proof of Theorem appdivnq
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . 4
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → 𝐴 <Q
𝐵) |
| 2 | | ltrelnq 7432 |
. . . . . . . 8
⊢
<Q ⊆ (Q ×
Q) |
| 3 | 2 | brel 4715 |
. . . . . . 7
⊢ (𝐴 <Q
𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈
Q)) |
| 4 | 3 | adantr 276 |
. . . . . 6
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → (𝐴 ∈ Q ∧
𝐵 ∈
Q)) |
| 5 | 4 | simpld 112 |
. . . . 5
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → 𝐴 ∈
Q) |
| 6 | 4 | simprd 114 |
. . . . 5
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → 𝐵 ∈
Q) |
| 7 | | recclnq 7459 |
. . . . . 6
⊢ (𝐶 ∈ Q →
(*Q‘𝐶) ∈ Q) |
| 8 | 7 | adantl 277 |
. . . . 5
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) →
(*Q‘𝐶) ∈ Q) |
| 9 | | ltmnqg 7468 |
. . . . 5
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q
∧ (*Q‘𝐶) ∈ Q) → (𝐴 <Q
𝐵 ↔
((*Q‘𝐶) ·Q 𝐴) <Q
((*Q‘𝐶) ·Q 𝐵))) |
| 10 | 5, 6, 8, 9 | syl3anc 1249 |
. . . 4
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → (𝐴 <Q
𝐵 ↔
((*Q‘𝐶) ·Q 𝐴) <Q
((*Q‘𝐶) ·Q 𝐵))) |
| 11 | 1, 10 | mpbid 147 |
. . 3
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) →
((*Q‘𝐶) ·Q 𝐴) <Q
((*Q‘𝐶) ·Q 𝐵)) |
| 12 | | ltbtwnnqq 7482 |
. . 3
⊢
(((*Q‘𝐶) ·Q 𝐴) <Q
((*Q‘𝐶) ·Q 𝐵) ↔ ∃𝑚 ∈ Q
(((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵))) |
| 13 | 11, 12 | sylib 122 |
. 2
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q
(((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵))) |
| 14 | 8 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(*Q‘𝐶) ∈ Q) |
| 15 | 5 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
𝐴 ∈
Q) |
| 16 | | mulclnq 7443 |
. . . . . . . . 9
⊢
(((*Q‘𝐶) ∈ Q ∧ 𝐴 ∈ Q) →
((*Q‘𝐶) ·Q 𝐴) ∈
Q) |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((*Q‘𝐶) ·Q 𝐴) ∈
Q) |
| 18 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
𝑚 ∈
Q) |
| 19 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
𝐶 ∈
Q) |
| 20 | | ltmnqg 7468 |
. . . . . . . 8
⊢
((((*Q‘𝐶) ·Q 𝐴) ∈ Q ∧
𝑚 ∈ Q
∧ 𝐶 ∈
Q) → (((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ↔ (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐴))
<Q (𝐶 ·Q 𝑚))) |
| 21 | 17, 18, 19, 20 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ↔ (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐴))
<Q (𝐶 ·Q 𝑚))) |
| 22 | | recidnq 7460 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Q →
(𝐶
·Q (*Q‘𝐶)) =
1Q) |
| 23 | 22 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Q →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐴) = (1Q
·Q 𝐴)) |
| 24 | 23 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐴) = (1Q
·Q 𝐴)) |
| 25 | | mulassnqg 7451 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
(*Q‘𝐶) ∈ Q ∧ 𝐴 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐴) = (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐴))) |
| 26 | 19, 14, 15, 25 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐴) = (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐴))) |
| 27 | | 1nq 7433 |
. . . . . . . . . . . 12
⊢
1Q ∈ Q |
| 28 | | mulcomnqg 7450 |
. . . . . . . . . . . 12
⊢
((1Q ∈ Q ∧ 𝐴 ∈ Q) →
(1Q ·Q 𝐴) = (𝐴 ·Q
1Q)) |
| 29 | 27, 28 | mpan 424 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Q →
(1Q ·Q 𝐴) = (𝐴 ·Q
1Q)) |
| 30 | | mulidnq 7456 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Q →
(𝐴
·Q 1Q) = 𝐴) |
| 31 | 29, 30 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Q →
(1Q ·Q 𝐴) = 𝐴) |
| 32 | 15, 31 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(1Q ·Q 𝐴) = 𝐴) |
| 33 | 24, 26, 32 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝐶
·Q ((*Q‘𝐶)
·Q 𝐴)) = 𝐴) |
| 34 | 33 | breq1d 4043 |
. . . . . . 7
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q ((*Q‘𝐶)
·Q 𝐴)) <Q (𝐶
·Q 𝑚) ↔ 𝐴 <Q (𝐶
·Q 𝑚))) |
| 35 | 21, 34 | bitrd 188 |
. . . . . 6
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ↔ 𝐴 <Q (𝐶
·Q 𝑚))) |
| 36 | 6 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
𝐵 ∈
Q) |
| 37 | | mulclnq 7443 |
. . . . . . . . 9
⊢
(((*Q‘𝐶) ∈ Q ∧ 𝐵 ∈ Q) →
((*Q‘𝐶) ·Q 𝐵) ∈
Q) |
| 38 | 14, 36, 37 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((*Q‘𝐶) ·Q 𝐵) ∈
Q) |
| 39 | | ltmnqg 7468 |
. . . . . . . 8
⊢ ((𝑚 ∈ Q ∧
((*Q‘𝐶) ·Q 𝐵) ∈ Q ∧
𝐶 ∈ Q)
→ (𝑚
<Q ((*Q‘𝐶)
·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q
(𝐶
·Q ((*Q‘𝐶)
·Q 𝐵)))) |
| 40 | 18, 38, 19, 39 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝑚
<Q ((*Q‘𝐶)
·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q
(𝐶
·Q ((*Q‘𝐶)
·Q 𝐵)))) |
| 41 | 22 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Q →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐵) = (1Q
·Q 𝐵)) |
| 42 | 41 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐵) = (1Q
·Q 𝐵)) |
| 43 | | mulassnqg 7451 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Q ∧
(*Q‘𝐶) ∈ Q ∧ 𝐵 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐵) = (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐵))) |
| 44 | 19, 14, 36, 43 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q (*Q‘𝐶))
·Q 𝐵) = (𝐶 ·Q
((*Q‘𝐶) ·Q 𝐵))) |
| 45 | | mulcomnqg 7450 |
. . . . . . . . . . . 12
⊢
((1Q ∈ Q ∧ 𝐵 ∈ Q) →
(1Q ·Q 𝐵) = (𝐵 ·Q
1Q)) |
| 46 | 27, 45 | mpan 424 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Q →
(1Q ·Q 𝐵) = (𝐵 ·Q
1Q)) |
| 47 | | mulidnq 7456 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Q →
(𝐵
·Q 1Q) = 𝐵) |
| 48 | 46, 47 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Q →
(1Q ·Q 𝐵) = 𝐵) |
| 49 | 36, 48 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(1Q ·Q 𝐵) = 𝐵) |
| 50 | 42, 44, 49 | 3eqtr3d 2237 |
. . . . . . . 8
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝐶
·Q ((*Q‘𝐶)
·Q 𝐵)) = 𝐵) |
| 51 | 50 | breq2d 4045 |
. . . . . . 7
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q 𝑚) <Q (𝐶
·Q ((*Q‘𝐶)
·Q 𝐵)) ↔ (𝐶 ·Q 𝑚) <Q
𝐵)) |
| 52 | 40, 51 | bitrd 188 |
. . . . . 6
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝑚
<Q ((*Q‘𝐶)
·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q
𝐵)) |
| 53 | 35, 52 | anbi12d 473 |
. . . . 5
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝐶
·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q
𝐵))) |
| 54 | | mulcomnqg 7450 |
. . . . . . . 8
⊢ ((𝐶 ∈ Q ∧
𝑚 ∈ Q)
→ (𝐶
·Q 𝑚) = (𝑚 ·Q 𝐶)) |
| 55 | 19, 18, 54 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝐶
·Q 𝑚) = (𝑚 ·Q 𝐶)) |
| 56 | 55 | breq2d 4045 |
. . . . . 6
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
(𝐴
<Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝑚
·Q 𝐶))) |
| 57 | 55 | breq1d 4043 |
. . . . . 6
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐶
·Q 𝑚) <Q 𝐵 ↔ (𝑚 ·Q 𝐶) <Q
𝐵)) |
| 58 | 56, 57 | anbi12d 473 |
. . . . 5
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((𝐴
<Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q
𝐵) ↔ (𝐴 <Q
(𝑚
·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q
𝐵))) |
| 59 | 53, 58 | bitrd 188 |
. . . 4
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝑚
·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q
𝐵))) |
| 60 | 59 | biimpd 144 |
. . 3
⊢ (((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) ∧ 𝑚 ∈ Q) →
((((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵)) → (𝐴 <Q (𝑚
·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q
𝐵))) |
| 61 | 60 | reximdva 2599 |
. 2
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) →
(∃𝑚 ∈
Q (((*Q‘𝐶) ·Q 𝐴) <Q
𝑚 ∧ 𝑚 <Q
((*Q‘𝐶) ·Q 𝐵)) → ∃𝑚 ∈ Q (𝐴 <Q
(𝑚
·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q
𝐵))) |
| 62 | 13, 61 | mpd 13 |
1
⊢ ((𝐴 <Q
𝐵 ∧ 𝐶 ∈ Q) → ∃𝑚 ∈ Q (𝐴 <Q
(𝑚
·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q
𝐵)) |