ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccmpl Unicode version

Theorem bccmpl 10493
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bccmpl  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  ( N  _C  ( N  -  K ) ) )

Proof of Theorem bccmpl
StepHypRef Expression
1 bcval2 10489 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
2 fznn0sub2 9898 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  ( 0 ... N
) )
3 bcval2 10489 . . . . . 6  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( N  _C  ( N  -  K ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( N  -  K ) ) )  x.  ( ! `  ( N  -  K
) ) ) ) )
42, 3syl 14 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  ( N  -  K ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( N  -  K ) ) )  x.  ( ! `  ( N  -  K
) ) ) ) )
5 elfznn0 9887 . . . . . . . . . . 11  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
65faccld 10475 . . . . . . . . . 10  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
76nncnd 8727 . . . . . . . . 9  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
82, 7syl 14 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
9 elfznn0 9887 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
109faccld 10475 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  K )  e.  NN )
1110nncnd 8727 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  K )  e.  CC )
128, 11mulcomd 7780 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =  ( ( ! `
 K )  x.  ( ! `  ( N  -  K )
) ) )
13 elfz3nn0 9888 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
14 elfzelz 9799 . . . . . . . . . 10  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
15 nn0cn 8980 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  CC )
16 zcn 9052 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
17 nncan 7984 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  K  e.  CC )  ->  ( N  -  ( N  -  K )
)  =  K )
1815, 16, 17syl2an 287 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  -  ( N  -  K )
)  =  K )
1913, 14, 18syl2anc 408 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  ( N  -  K ) )  =  K )
2019fveq2d 5418 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( ! `  ( N  -  ( N  -  K ) ) )  =  ( ! `  K ) )
2120oveq1d 5782 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  ( N  -  K ) ) )  x.  ( ! `  ( N  -  K
) ) )  =  ( ( ! `  K )  x.  ( ! `  ( N  -  K ) ) ) )
2212, 21eqtr4d 2173 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  =  ( ( ! `
 ( N  -  ( N  -  K
) ) )  x.  ( ! `  ( N  -  K )
) ) )
2322oveq2d 5783 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  ( N  -  K )
) )  x.  ( ! `  ( N  -  K ) ) ) ) )
244, 23eqtr4d 2173 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  ( N  -  K ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
251, 24eqtr4d 2173 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K )
) )
2625adantl 275 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K ) ) )
27 bcval3 10490 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
28 simp1 981 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
29 nn0z 9067 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
30 zsubcl 9088 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  -  K
)  e.  ZZ )
3129, 30sylan 281 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  -  K
)  e.  ZZ )
32313adant3 1001 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ZZ )
33 fznn0sub2 9898 . . . . . . . 8  |-  ( ( N  -  K )  e.  ( 0 ... N )  ->  ( N  -  ( N  -  K ) )  e.  ( 0 ... N
) )
3418eleq1d 2206 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  -  ( N  -  K
) )  e.  ( 0 ... N )  <-> 
K  e.  ( 0 ... N ) ) )
3533, 34syl5ib 153 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  -  K )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... N ) ) )
3635con3d 620 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( -.  K  e.  ( 0 ... N
)  ->  -.  ( N  -  K )  e.  ( 0 ... N
) ) )
37363impia 1178 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  -.  ( N  -  K )  e.  ( 0 ... N ) )
38 bcval3 10490 . . . . 5  |-  ( ( N  e.  NN0  /\  ( N  -  K
)  e.  ZZ  /\  -.  ( N  -  K
)  e.  ( 0 ... N ) )  ->  ( N  _C  ( N  -  K
) )  =  0 )
3928, 32, 37, 38syl3anc 1216 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  ( N  -  K
) )  =  0 )
4027, 39eqtr4d 2173 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K ) ) )
41403expa 1181 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K )
) )
42 simpr 109 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
43 0zd 9059 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
4429adantr 274 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  ZZ )
45 fzdcel 9813 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
4642, 43, 44, 45syl3anc 1216 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  -> DECID  K  e.  ( 0 ... N ) )
47 exmiddc 821 . . 3  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
4846, 47syl 14 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
4926, 41, 48mpjaodan 787 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  =  ( N  _C  ( N  -  K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613    x. cmul 7618    - cmin 7926    / cdiv 8425   NN0cn0 8970   ZZcz 9047   ...cfz 9783   !cfa 10464    _C cbc 10486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-fz 9784  df-seqfrec 10212  df-fac 10465  df-bc 10487
This theorem is referenced by:  bcnn  10496  bcnp1n  10498  bcp1m1  10504  bcnm1  10511
  Copyright terms: Public domain W3C validator