ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domneq0 GIF version

Theorem domneq0 14244
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domneq0 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem domneq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1020 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
2 domneq0.b . . . . . 6 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . 6 · = (.r𝑅)
4 domneq0.z . . . . . 6 0 = (0g𝑅)
52, 3, 4isdomn 14241 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
65simprbi 275 . . . 4 (𝑅 ∈ Domn → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
763ad2ant1 1042 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
8 oveq1 6014 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2238 . . . . 5 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
10 eqeq1 2236 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1110orbi1d 796 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑦 = 0 )))
129, 11imbi12d 234 . . . 4 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 ))))
13 oveq2 6015 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2238 . . . . 5 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
15 eqeq1 2236 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
1615orbi2d 795 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑌 = 0 )))
1714, 16imbi12d 234 . . . 4 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 ))))
1812, 17rspc2va 2921 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
191, 7, 18syl2anc 411 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
20 domnring 14243 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21203ad2ant1 1042 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
22 simp3 1023 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
232, 3, 4ringlz 14014 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
2421, 22, 23syl2anc 411 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ( 0 · 𝑌) = 0 )
25 oveq1 6014 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
2625eqeq1d 2238 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
2724, 26syl5ibrcom 157 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
28 simp2 1022 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
292, 3, 4ringrz 14015 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
3021, 28, 29syl2anc 411 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 0 ) = 0 )
31 oveq2 6015 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
3231eqeq1d 2238 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
3330, 32syl5ibrcom 157 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
3427, 33jaod 722 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
3519, 34impbid 129 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wral 2508  cfv 5318  (class class class)co 6007  Basecbs 13040  .rcmulr 13119  0gc0g 13297  Ringcrg 13967  NzRingcnzr 14151  Domncdomn 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ring 13969  df-nzr 14152  df-domn 14231
This theorem is referenced by:  domnmuln0  14245  znidomb  14630
  Copyright terms: Public domain W3C validator