| Step | Hyp | Ref
| Expression |
| 1 | | 3simpc 998 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 2 | | domneq0.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | domneq0.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 4 | | domneq0.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 5 | 2, 3, 4 | isdomn 13835 |
. . . . 5
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 6 | 5 | simprbi 275 |
. . . 4
⊢ (𝑅 ∈ Domn →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 7 | 6 | 3ad2ant1 1020 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 8 | | oveq1 5930 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦)) |
| 9 | 8 | eqeq1d 2205 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 )) |
| 10 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) |
| 11 | 10 | orbi1d 792 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑦 = 0 ))) |
| 12 | 9, 11 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )))) |
| 13 | | oveq2 5931 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) |
| 14 | 13 | eqeq1d 2205 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
| 15 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) |
| 16 | 15 | orbi2d 791 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 = 0 ∨ 𝑦 = 0 ) ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 17 | 14, 16 | imbi12d 234 |
. . . 4
⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0 ∨ 𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 )))) |
| 18 | 12, 17 | rspc2va 2882 |
. . 3
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 19 | 1, 7, 18 | syl2anc 411 |
. 2
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 20 | | domnring 13837 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 21 | 20 | 3ad2ant1 1020 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 22 | | simp3 1001 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 23 | 2, 3, 4 | ringlz 13609 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 0 ) |
| 25 | | oveq1 5930 |
. . . . 5
⊢ (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌)) |
| 26 | 25 | eqeq1d 2205 |
. . . 4
⊢ (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 )) |
| 27 | 24, 26 | syl5ibrcom 157 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 )) |
| 28 | | simp2 1000 |
. . . . 5
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 29 | 2, 3, 4 | ringrz 13610 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 30 | 21, 28, 29 | syl2anc 411 |
. . . 4
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 31 | | oveq2 5931 |
. . . . 5
⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) |
| 32 | 31 | eqeq1d 2205 |
. . . 4
⊢ (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 )) |
| 33 | 30, 32 | syl5ibrcom 157 |
. . 3
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
| 34 | 27, 33 | jaod 718 |
. 2
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 = 0 ∨ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )) |
| 35 | 19, 34 | impbid 129 |
1
⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |