ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzel2 GIF version

Theorem elfzel2 10165
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)

Proof of Theorem elfzel2
StepHypRef Expression
1 elfzuz3 10164 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2 eluzelz 9677 . 2 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cfv 5280  (class class class)co 5957  cz 9392  cuz 9668  ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593  ax-cnex 8036  ax-resscn 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-neg 8266  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by:  elfz1eq  10177  fzdisj  10194  fzssp1  10209  fzp1disj  10222  fzrev2i  10228  fzrev3  10229  fznuz  10244  fznn0sub2  10270  elfzmlbm  10273  difelfznle  10277  nn0disj  10280  fzofzp1b  10379  iseqf1olemqcl  10666  iseqf1olemab  10669  iseqf1olemqf1o  10673  iseqf1olemqk  10674  iseqf1olemjpcl  10675  iseqf1olemqpcl  10676  iseqf1olemfvp  10677  seq3f1olemqsumkj  10678  seq3f1olemqsumk  10679  seq3f1olemqsum  10680  seq3f1olemstep  10681  bcm1k  10927  bcp1nk  10929  swrdwrdsymbg  11140  ccatswrd  11146  swrdswrd  11181  pfxswrd  11182
  Copyright terms: Public domain W3C validator