| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzel2 | GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10164 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 9677 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 ℤcz 9392 ℤ≥cuz 9668 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-neg 8266 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: elfz1eq 10177 fzdisj 10194 fzssp1 10209 fzp1disj 10222 fzrev2i 10228 fzrev3 10229 fznuz 10244 fznn0sub2 10270 elfzmlbm 10273 difelfznle 10277 nn0disj 10280 fzofzp1b 10379 iseqf1olemqcl 10666 iseqf1olemab 10669 iseqf1olemqf1o 10673 iseqf1olemqk 10674 iseqf1olemjpcl 10675 iseqf1olemqpcl 10676 iseqf1olemfvp 10677 seq3f1olemqsumkj 10678 seq3f1olemqsumk 10679 seq3f1olemqsum 10680 seq3f1olemstep 10681 bcm1k 10927 bcp1nk 10929 swrdwrdsymbg 11140 ccatswrd 11146 swrdswrd 11181 pfxswrd 11182 |
| Copyright terms: Public domain | W3C validator |