ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzel2 GIF version

Theorem elfzel2 10127
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)

Proof of Theorem elfzel2
StepHypRef Expression
1 elfzuz3 10126 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2 eluzelz 9639 . 2 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  cfv 5268  (class class class)co 5934  cz 9354  cuz 9630  ...cfz 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4583  ax-cnex 7998  ax-resscn 7999
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-neg 8228  df-z 9355  df-uz 9631  df-fz 10113
This theorem is referenced by:  elfz1eq  10139  fzdisj  10156  fzssp1  10171  fzp1disj  10184  fzrev2i  10190  fzrev3  10191  fznuz  10206  fznn0sub2  10232  elfzmlbm  10235  difelfznle  10239  nn0disj  10242  fzofzp1b  10338  iseqf1olemqcl  10625  iseqf1olemab  10628  iseqf1olemqf1o  10632  iseqf1olemqk  10633  iseqf1olemjpcl  10634  iseqf1olemqpcl  10635  iseqf1olemfvp  10636  seq3f1olemqsumkj  10637  seq3f1olemqsumk  10638  seq3f1olemqsum  10639  seq3f1olemstep  10640  bcm1k  10886  bcp1nk  10888
  Copyright terms: Public domain W3C validator