ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pire Unicode version

Theorem pire 14478
Description:  pi is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
pire  |-  pi  e.  RR

Proof of Theorem pire
StepHypRef Expression
1 pilem3 14475 . . 3  |-  ( pi  e.  ( 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
21simpli 111 . 2  |-  pi  e.  ( 2 (,) 4
)
3 elioore 9925 . 2  |-  ( pi  e.  ( 2 (,) 4 )  ->  pi  e.  RR )
42, 3ax-mp 5 1  |-  pi  e.  RR
Colors of variables: wff set class
Syntax hints:    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   RRcr 7823   0cc0 7824   2c2 8983   4c4 8985   (,)cioo 9901   sincsin 11665   picpi 11668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6096  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-map 6663  df-pm 6664  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-xneg 9785  df-xadd 9786  df-ioo 9905  df-ioc 9906  df-ico 9907  df-icc 9908  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-sin 11671  df-cos 11672  df-pi 11674  df-rest 12707  df-topgen 12726  df-psmet 13704  df-xmet 13705  df-met 13706  df-bl 13707  df-mopn 13708  df-top 13769  df-topon 13782  df-bases 13814  df-ntr 13867  df-cn 13959  df-cnp 13960  df-tx 14024  df-cncf 14329  df-limced 14396  df-dvap 14397
This theorem is referenced by:  picn  14479  pipos  14480  pirp  14481  sinhalfpilem  14483  halfpire  14484  sincosq1lem  14517  sincosq2sgn  14519  sincosq3sgn  14520  sincosq4sgn  14521  sinq12gt0  14522  sinq34lt0t  14523  cosq14gt0  14524  cosq23lt0  14525  coseq00topi  14527  coseq0negpitopi  14528  tangtx  14530  sincos4thpi  14532  tan4thpi  14533  sincos6thpi  14534  pigt3  14536  pige3  14537  coskpi  14540  cosordlem  14541  cosq34lt1  14542  cos02pilt1  14543  cos0pilt1  14544  cos11  14545  ioocosf1o  14546  negpitopissre  14547  rpabscxpbnd  14630  taupi  15093
  Copyright terms: Public domain W3C validator