ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellspsn Unicode version

Theorem ellspsn 13916
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
ellspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Distinct variable groups:    k, F    k, K    k, N    U, k    k, V    k, W    .x. , k    k, X

Proof of Theorem ellspsn
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
2 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
3 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
4 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
5 lspsn.n . . . 4  |-  N  =  ( LSpan `  W )
61, 2, 3, 4, 5lspsn 13915 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
76eleq2d 2263 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <-> 
U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } ) )
8 simpr 110 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  U  =  ( k  .x.  X
) )
9 vex 2763 . . . . . . . 8  |-  k  e. 
_V
10 vscaslid 12783 . . . . . . . . . 10  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1110slotex 12648 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
124, 11eqeltrid 2280 . . . . . . . 8  |-  ( W  e.  LMod  ->  .x.  e.  _V )
13 simpr 110 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
14 ovexg 5953 . . . . . . . 8  |-  ( ( k  e.  _V  /\  .x. 
e.  _V  /\  X  e.  V )  ->  (
k  .x.  X )  e.  _V )
159, 12, 13, 14mp3an2ani 1355 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
k  .x.  X )  e.  _V )
1615adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  ( k  .x.  X )  e.  _V )
178, 16eqeltrd 2270 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  U  =  ( k  .x.  X ) )  ->  U  e.  _V )
1817ex 115 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  =  ( k  .x.  X )  ->  U  e.  _V ) )
1918rexlimdvw 2615 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V ) )
20 eqeq1 2200 . . . . 5  |-  ( v  =  U  ->  (
v  =  ( k 
.x.  X )  <->  U  =  ( k  .x.  X
) ) )
2120rexbidv 2495 . . . 4  |-  ( v  =  U  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
2221elab3g 2912 . . 3  |-  ( ( E. k  e.  K  U  =  ( k  .x.  X )  ->  U  e.  _V )  ->  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
2319, 22syl 14 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  U  =  ( k  .x.  X
) ) )
247, 23bitrd 188 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( U  e.  ( N `  { X } )  <->  E. k  e.  K  U  =  ( k  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   {csn 3619   ` cfv 5255  (class class class)co 5919   Basecbs 12621  Scalarcsca 12701   .scvsca 12702   LModclmod 13786   LSpanclspn 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-lssm 13852  df-lsp 13886
This theorem is referenced by:  lspsnss2  13918  rspsn  14033
  Copyright terms: Public domain W3C validator