| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ellspsn | GIF version | ||
| Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| ellspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lspsn.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | lspsn 14048 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 7 | 6 | eleq2d 2266 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)})) |
| 8 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋)) | |
| 9 | vex 2766 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 10 | vscaslid 12865 | . . . . . . . . . 10 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 11 | 10 | slotex 12730 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) ∈ V) |
| 12 | 4, 11 | eqeltrid 2283 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → · ∈ V) |
| 13 | simpr 110 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 14 | ovexg 5959 | . . . . . . . 8 ⊢ ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) | |
| 15 | 9, 12, 13, 14 | mp3an2ani 1355 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V) |
| 17 | 8, 16 | eqeltrd 2273 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V) |
| 18 | 17 | ex 115 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
| 19 | 18 | rexlimdvw 2618 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
| 20 | eqeq1 2203 | . . . . 5 ⊢ (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋))) | |
| 21 | 20 | rexbidv 2498 | . . . 4 ⊢ (𝑣 = 𝑈 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 22 | 21 | elab3g 2915 | . . 3 ⊢ ((∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 23 | 19, 22 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 24 | 7, 23 | bitrd 188 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 {csn 3623 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 Scalarcsca 12783 ·𝑠 cvsca 12784 LModclmod 13919 LSpanclspn 14018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 df-lssm 13985 df-lsp 14019 |
| This theorem is referenced by: lspsnss2 14051 rspsn 14166 |
| Copyright terms: Public domain | W3C validator |