ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellspsn GIF version

Theorem ellspsn 14223
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ellspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐾   𝑘,𝑁   𝑈,𝑘   𝑘,𝑉   𝑘,𝑊   · ,𝑘   𝑘,𝑋

Proof of Theorem ellspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
3 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
4 lspsn.t . . . 4 · = ( ·𝑠𝑊)
5 lspsn.n . . . 4 𝑁 = (LSpan‘𝑊)
61, 2, 3, 4, 5lspsn 14222 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
76eleq2d 2276 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}))
8 simpr 110 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋))
9 vex 2776 . . . . . . . 8 𝑘 ∈ V
10 vscaslid 13039 . . . . . . . . . 10 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1110slotex 12903 . . . . . . . . 9 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
124, 11eqeltrid 2293 . . . . . . . 8 (𝑊 ∈ LMod → · ∈ V)
13 simpr 110 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
14 ovexg 5985 . . . . . . . 8 ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ V)
159, 12, 13, 14mp3an2ani 1357 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ V)
1615adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V)
178, 16eqeltrd 2283 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V)
1817ex 115 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V))
1918rexlimdvw 2628 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V))
20 eqeq1 2213 . . . . 5 (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋)))
2120rexbidv 2508 . . . 4 (𝑣 = 𝑈 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
2221elab3g 2925 . . 3 ((∃𝑘𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
2319, 22syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
247, 23bitrd 188 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  {csn 3634  cfv 5276  (class class class)co 5951  Basecbs 12876  Scalarcsca 12956   ·𝑠 cvsca 12957  LModclmod 14093  LSpanclspn 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381  df-mgp 13727  df-ur 13766  df-ring 13804  df-lmod 14095  df-lssm 14159  df-lsp 14193
This theorem is referenced by:  lspsnss2  14225  rspsn  14340
  Copyright terms: Public domain W3C validator