| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ellspsn | GIF version | ||
| Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) | 
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) | 
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) | 
| Ref | Expression | 
|---|---|
| ellspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lspsn.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | lspsn 13972 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) | 
| 7 | 6 | eleq2d 2266 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)})) | 
| 8 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋)) | |
| 9 | vex 2766 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 10 | vscaslid 12840 | . . . . . . . . . 10 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 11 | 10 | slotex 12705 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) ∈ V) | 
| 12 | 4, 11 | eqeltrid 2283 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → · ∈ V) | 
| 13 | simpr 110 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 14 | ovexg 5956 | . . . . . . . 8 ⊢ ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) | |
| 15 | 9, 12, 13, 14 | mp3an2ani 1355 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) | 
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V) | 
| 17 | 8, 16 | eqeltrd 2273 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V) | 
| 18 | 17 | ex 115 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) | 
| 19 | 18 | rexlimdvw 2618 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) | 
| 20 | eqeq1 2203 | . . . . 5 ⊢ (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋))) | |
| 21 | 20 | rexbidv 2498 | . . . 4 ⊢ (𝑣 = 𝑈 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | 
| 22 | 21 | elab3g 2915 | . . 3 ⊢ ((∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | 
| 23 | 19, 22 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | 
| 24 | 7, 23 | bitrd 188 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 {csn 3622 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 Scalarcsca 12758 ·𝑠 cvsca 12759 LModclmod 13843 LSpanclspn 13942 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mgp 13477 df-ur 13516 df-ring 13554 df-lmod 13845 df-lssm 13909 df-lsp 13943 | 
| This theorem is referenced by: lspsnss2 13975 rspsn 14090 | 
| Copyright terms: Public domain | W3C validator |