ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellspsn GIF version

Theorem ellspsn 13973
Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
ellspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐾   𝑘,𝑁   𝑈,𝑘   𝑘,𝑉   𝑘,𝑊   · ,𝑘   𝑘,𝑋

Proof of Theorem ellspsn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
3 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
4 lspsn.t . . . 4 · = ( ·𝑠𝑊)
5 lspsn.n . . . 4 𝑁 = (LSpan‘𝑊)
61, 2, 3, 4, 5lspsn 13972 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
76eleq2d 2266 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)}))
8 simpr 110 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋))
9 vex 2766 . . . . . . . 8 𝑘 ∈ V
10 vscaslid 12840 . . . . . . . . . 10 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1110slotex 12705 . . . . . . . . 9 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
124, 11eqeltrid 2283 . . . . . . . 8 (𝑊 ∈ LMod → · ∈ V)
13 simpr 110 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
14 ovexg 5956 . . . . . . . 8 ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ V)
159, 12, 13, 14mp3an2ani 1355 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑘 · 𝑋) ∈ V)
1615adantr 276 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V)
178, 16eqeltrd 2273 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V)
1817ex 115 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V))
1918rexlimdvw 2618 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V))
20 eqeq1 2203 . . . . 5 (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋)))
2120rexbidv 2498 . . . 4 (𝑣 = 𝑈 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
2221elab3g 2915 . . 3 ((∃𝑘𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
2319, 22syl 14 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
247, 23bitrd 188 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘𝐾 𝑈 = (𝑘 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  {csn 3622  cfv 5258  (class class class)co 5922  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759  LModclmod 13843  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  lspsnss2  13975  rspsn  14090
  Copyright terms: Public domain W3C validator