| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ellspsn | GIF version | ||
| Description: Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| ellspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | lspsn.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | lspsn 14388 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
| 7 | 6 | eleq2d 2299 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ 𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)})) |
| 8 | simpr 110 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 = (𝑘 · 𝑋)) | |
| 9 | vex 2802 | . . . . . . . 8 ⊢ 𝑘 ∈ V | |
| 10 | vscaslid 13204 | . . . . . . . . . 10 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 11 | 10 | slotex 13067 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) ∈ V) |
| 12 | 4, 11 | eqeltrid 2316 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → · ∈ V) |
| 13 | simpr 110 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 14 | ovexg 6041 | . . . . . . . 8 ⊢ ((𝑘 ∈ V ∧ · ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) | |
| 15 | 9, 12, 13, 14 | mp3an2ani 1378 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑘 · 𝑋) ∈ V) |
| 16 | 15 | adantr 276 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → (𝑘 · 𝑋) ∈ V) |
| 17 | 8, 16 | eqeltrd 2306 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 = (𝑘 · 𝑋)) → 𝑈 ∈ V) |
| 18 | 17 | ex 115 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
| 19 | 18 | rexlimdvw 2652 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V)) |
| 20 | eqeq1 2236 | . . . . 5 ⊢ (𝑣 = 𝑈 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑈 = (𝑘 · 𝑋))) | |
| 21 | 20 | rexbidv 2531 | . . . 4 ⊢ (𝑣 = 𝑈 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 22 | 21 | elab3g 2954 | . . 3 ⊢ ((∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋) → 𝑈 ∈ V) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 23 | 19, 22 | syl 14 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| 24 | 7, 23 | bitrd 188 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 {csn 3666 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 Scalarcsca 13121 ·𝑠 cvsca 13122 LModclmod 14259 LSpanclspn 14358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mgp 13892 df-ur 13931 df-ring 13969 df-lmod 14261 df-lssm 14325 df-lsp 14359 |
| This theorem is referenced by: lspsnss2 14391 rspsn 14506 |
| Copyright terms: Public domain | W3C validator |