ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqshft2g Unicode version

Theorem seqshft2g 10576
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqshft2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqshft2.2  |-  ( ph  ->  K  e.  ZZ )
seqshft2.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
seqshft2g.p  |-  ( ph  ->  .+  e.  V )
seqshft2g.f  |-  ( ph  ->  F  e.  W )
seqshft2g.g  |-  ( ph  ->  G  e.  X )
Assertion
Ref Expression
seqshft2g  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, N
Allowed substitution hints:    .+ ( k)    V( k)    W( k)    X( k)

Proof of Theorem seqshft2g
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqshft2.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10109 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2259 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5559 . . . . . . 7  |-  ( x  =  M  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fvoveq1 5946 . . . . . . 7  |-  ( x  =  M  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) )
75, 6eqeq12d 2211 . . . . . 6  |-  ( x  =  M  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) )
84, 7imbi12d 234 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) )
98imbi2d 230 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  M )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( M  +  K ) ) ) ) ) )
10 eleq1 2259 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
11 fveq2 5559 . . . . . . 7  |-  ( x  =  n  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fvoveq1 5946 . . . . . . 7  |-  ( x  =  n  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )
1311, 12eqeq12d 2211 . . . . . 6  |-  ( x  =  n  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) )
1410, 13imbi12d 234 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) )
1514imbi2d 230 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  n )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) ) ) ) ) )
16 eleq1 2259 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
17 fveq2 5559 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fvoveq1 5946 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) )
1917, 18eqeq12d 2211 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) )
2016, 19imbi12d 234 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) )
2120imbi2d 230 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( (
n  +  1 )  +  K ) ) ) ) ) )
22 eleq1 2259 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
23 fveq2 5559 . . . . . . 7  |-  ( x  =  N  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fvoveq1 5946 . . . . . . 7  |-  ( x  =  N  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( N  +  K )
) )
2523, 24eqeq12d 2211 . . . . . 6  |-  ( x  =  N  ->  (
(  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) )  <->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
2622, 25imbi12d 234 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  x )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( x  +  K ) ) )  <-> 
( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
2726imbi2d 230 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  x
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
x  +  K ) ) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) ) )
28 fveq2 5559 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
29 fvoveq1 5946 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  ( k  +  K ) )  =  ( G `  ( M  +  K )
) )
3028, 29eqeq12d 2211 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  M )  =  ( G `  ( M  +  K ) ) ) )
31 seqshft2.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  ( k  +  K ) ) )
3231ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 ( k  +  K ) ) )
33 eluzfz1 10108 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
341, 33syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
3530, 32, 34rspcdva 2873 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( G `
 ( M  +  K ) ) )
36 eluzel2 9608 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
371, 36syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
38 seqshft2g.f . . . . . . 7  |-  ( ph  ->  F  e.  W )
39 seqshft2g.p . . . . . . 7  |-  ( ph  ->  .+  e.  V )
40 seq1g 10557 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  F  e.  W  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
4137, 38, 39, 40syl3anc 1249 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
42 seqshft2.2 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
4337, 42zaddcld 9454 . . . . . . 7  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
44 seqshft2g.g . . . . . . 7  |-  ( ph  ->  G  e.  X )
45 seq1g 10557 . . . . . . 7  |-  ( ( ( M  +  K
)  e.  ZZ  /\  G  e.  X  /\  .+  e.  V )  -> 
(  seq ( M  +  K ) (  .+  ,  G ) `  ( M  +  K )
)  =  ( G `
 ( M  +  K ) ) )
4643, 44, 39, 45syl3anc 1249 . . . . . 6  |-  ( ph  ->  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) )  =  ( G `  ( M  +  K )
) )
4735, 41, 463eqtr4d 2239 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( M  +  K ) ) )
4847a1i13 24 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  M
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  ( M  +  K )
) ) ) )
49 peano2fzr 10114 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
5049adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
5150expr 375 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
5251imim1d 75 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) )  ->  (
( n  +  1 )  e.  ( M ... N )  -> 
(  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) ) )
53 oveq1 5930 . . . . . 6  |-  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) )
54 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
5538adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  F  e.  W )
5639adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  .+  e.  V
)
57 seqp1g 10560 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= `  M )  /\  F  e.  W  /\  .+  e.  V )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5854, 55, 56, 57syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5942adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  K  e.  ZZ )
60 eluzadd 9632 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
n  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
6154, 59, 60syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
6244adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  G  e.  X )
63 seqp1g 10560 . . . . . . . . 9  |-  ( ( ( n  +  K
)  e.  ( ZZ>= `  ( M  +  K
) )  /\  G  e.  X  /\  .+  e.  V )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
6461, 62, 56, 63syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
65 eluzelz 9612 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6654, 65syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
67 zcn 9333 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
68 zcn 9333 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
69 ax-1cn 7974 . . . . . . . . . . . 12  |-  1  e.  CC
70 add32 8187 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  K  e.  CC )  ->  (
( n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
7169, 70mp3an2 1336 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  K  e.  CC )  ->  ( ( n  + 
1 )  +  K
)  =  ( ( n  +  K )  +  1 ) )
7267, 68, 71syl2an 289 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( n  + 
1 )  +  K
)  =  ( ( n  +  K )  +  1 ) )
7366, 59, 72syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
n  +  1 )  +  K )  =  ( ( n  +  K )  +  1 ) )
7473fveq2d 5563 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  K
)  +  1 ) ) )
75 fveq2 5559 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
76 fvoveq1 5946 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  ( k  +  K ) )  =  ( G `  (
( n  +  1 )  +  K ) ) )
7775, 76eqeq12d 2211 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =  ( G `
 ( k  +  K ) )  <->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) ) )
7832adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  =  ( G `  ( k  +  K ) ) )
79 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
8077, 78, 79rspcdva 2873 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  1 )  +  K ) ) )
8173fveq2d 5563 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( G `  ( ( n  + 
1 )  +  K
) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
8280, 81eqtrd 2229 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  =  ( G `  ( ( n  +  K )  +  1 ) ) )
8382oveq2d 5939 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) )  =  ( (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( G `
 ( ( n  +  K )  +  1 ) ) ) )
8464, 74, 833eqtr4d 2239 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  =  ( (  seq ( M  +  K ) (  .+  ,  G ) `  (
n  +  K ) )  .+  ( F `
 ( n  + 
1 ) ) ) )
8558, 84eqeq12d 2211 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) )  <->  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) )  =  ( (  seq ( M  +  K )
(  .+  ,  G
) `  ( n  +  K ) )  .+  ( F `  ( n  +  1 ) ) ) ) )
8653, 85imbitrrid 156 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) )
8752, 86animpimp2impd 559 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  (  seq M (  .+  ,  F ) `  n
)  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
n  +  K ) ) ) )  -> 
( ph  ->  ( ( n  +  1 )  e.  ( M ... N )  ->  (  seq M (  .+  ,  F ) `  (
n  +  1 ) )  =  (  seq ( M  +  K
) (  .+  ,  G ) `  (
( n  +  1 )  +  K ) ) ) ) ) )
889, 15, 21, 27, 48, 87uzind4 9664 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) ) )
891, 88mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  (  seq M
(  .+  ,  F
) `  N )  =  (  seq ( M  +  K )
(  .+  ,  G
) `  ( N  +  K ) ) ) )
903, 89mpd 13 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq ( M  +  K ) ( 
.+  ,  G ) `
 ( N  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5923   CCcc 7879   1c1 7882    + caddc 7884   ZZcz 9328   ZZ>=cuz 9603   ...cfz 10085    seqcseq 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-seqfrec 10542
This theorem is referenced by:  seqf1oglem2  10614
  Copyright terms: Public domain W3C validator