ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzadd GIF version

Theorem eluzadd 9146
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzadd ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Proof of Theorem eluzadd
StepHypRef Expression
1 eluzelz 9127 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 zaddcl 8888 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
31, 2sylan 278 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
4 eluzel2 9123 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
54adantr 271 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℤ)
65zred 8967 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
71adantr 271 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
87zred 8967 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
9 simpr 109 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
109zred 8967 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
11 simpl 108 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ (ℤ𝑀))
12 eluz1 9122 . . . . . 6 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
135, 12syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
1411, 13mpbid 146 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑀𝑁))
1514simprd 113 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑀𝑁)
166, 8, 10, 15leadd1dd 8133 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))
175, 9zaddcld 8971 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
18 eluz1 9122 . . 3 ((𝑀 + 𝐾) ∈ ℤ → ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))))
1917, 18syl 14 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))))
203, 16, 19mpbir2and 893 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1445   class class class wbr 3867  cfv 5049  (class class class)co 5690   + caddc 7450  cle 7620  cz 8848  cuz 9118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119
This theorem is referenced by:  seq3shft2  10023  shftuz  10366  isumshft  11033
  Copyright terms: Public domain W3C validator