ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1sr Unicode version

Theorem 1sr 7866
Description: The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
1sr  |-  1R  e.  R.

Proof of Theorem 1sr
StepHypRef Expression
1 1pr 7669 . . . . 5  |-  1P  e.  P.
2 addclpr 7652 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 426 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 opelxpi 4708 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  <. ( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
53, 1, 4mp2an 426 . . 3  |-  <. ( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )
6 enrex 7852 . . . 4  |-  ~R  e.  _V
76ecelqsi 6678 . . 3  |-  ( <.
( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
85, 7ax-mp 5 . 2  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
9 df-1r 7847 . 2  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
10 df-nr 7842 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
118, 9, 103eltr4i 2287 1  |-  1R  e.  R.
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   <.cop 3636    X. cxp 4674  (class class class)co 5946   [cec 6620   /.cqs 6621   P.cnp 7406   1Pc1p 7407    +P. cpp 7408    ~R cer 7411   R.cnr 7412   1Rc1r 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-i1p 7582  df-iplp 7583  df-enr 7841  df-nr 7842  df-1r 7847
This theorem is referenced by:  1ne0sr  7881  pn0sr  7886  ltadd1sr  7891  ltm1sr  7892  caucvgsrlemoffval  7911  caucvgsrlemofff  7912  caucvgsrlemoffcau  7913  caucvgsrlemoffgt1  7914  caucvgsrlemoffres  7915  caucvgsr  7917  suplocsrlempr  7922  pitonnlem2  7962  peano1nnnn  7967  peano2nnnn  7968  ax1cn  7976  ax1re  7977  axicn  7978  axi2m1  7990  ax1rid  7992  axprecex  7995  axcnre  7996
  Copyright terms: Public domain W3C validator