Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1sr | Unicode version |
Description: The constant is a signed real. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
1sr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7457 | . . . . 5 | |
2 | addclpr 7440 | . . . . 5 | |
3 | 1, 1, 2 | mp2an 423 | . . . 4 |
4 | opelxpi 4615 | . . . 4 | |
5 | 3, 1, 4 | mp2an 423 | . . 3 |
6 | enrex 7640 | . . . 4 | |
7 | 6 | ecelqsi 6527 | . . 3 |
8 | 5, 7 | ax-mp 5 | . 2 |
9 | df-1r 7635 | . 2 | |
10 | df-nr 7630 | . 2 | |
11 | 8, 9, 10 | 3eltr4i 2239 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cop 3563 cxp 4581 (class class class)co 5818 cec 6471 cqs 6472 cnp 7194 c1p 7195 cpp 7196 cer 7199 cnr 7200 c1r 7202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-enr 7629 df-nr 7630 df-1r 7635 |
This theorem is referenced by: 1ne0sr 7669 pn0sr 7674 ltadd1sr 7679 ltm1sr 7680 caucvgsrlemoffval 7699 caucvgsrlemofff 7700 caucvgsrlemoffcau 7701 caucvgsrlemoffgt1 7702 caucvgsrlemoffres 7703 caucvgsr 7705 suplocsrlempr 7710 pitonnlem2 7750 peano1nnnn 7755 peano2nnnn 7756 ax1cn 7764 ax1re 7765 axicn 7766 axi2m1 7778 ax1rid 7780 axprecex 7783 axcnre 7784 |
Copyright terms: Public domain | W3C validator |