ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg Unicode version

Theorem mappsrprg 7745
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7495 . . . . 5  |-  1P  e.  P.
2 addclpr 7478 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 423 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 ltaddpr 7538 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  A  e.  P. )  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
53, 4mpan 421 . . 3  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
65adantr 274 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( 1P  +P.  1P )  <P  ( ( 1P 
+P.  1P )  +P.  A
) )
7 df-m1r 7674 . . . . . 6  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
87breq1i 3989 . . . . 5  |-  ( -1R 
<R  [ <. A ,  1P >. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. A ,  1P >. ]  ~R  )
91a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  1P  e.  P. )
103a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  e. 
P. )
11 id 19 . . . . . 6  |-  ( A  e.  P.  ->  A  e.  P. )
12 ltsrprg 7688 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( A  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
139, 10, 11, 9, 12syl22anc 1229 . . . . 5  |-  ( A  e.  P.  ->  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
148, 13syl5bb 191 . . . 4  |-  ( A  e.  P.  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
1514adantr 274 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
16 m1r 7693 . . . 4  |-  -1R  e.  R.
17 opelxpi 4636 . . . . . . 7  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  <. A ,  1P >.  e.  ( P.  X.  P. ) )
18 enrex 7678 . . . . . . . 8  |-  ~R  e.  _V
1918ecelqsi 6555 . . . . . . 7  |-  ( <. A ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
2017, 19syl 14 . . . . . 6  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
211, 20mpan2 422 . . . . 5  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
22 df-nr 7668 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2321, 22eleqtrrdi 2260 . . . 4  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  R. )
24 simpr 109 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  C  e.  R. )
25 ltasrg 7711 . . . 4  |-  ( ( -1R  e.  R.  /\  [
<. A ,  1P >. ]  ~R  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2616, 23, 24, 25mp3an2ani 1334 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2715, 26bitr3d 189 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( ( 1P  +P.  1P )  <P  ( ( 1P  +P.  1P )  +P. 
A )  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  )
) )
286, 27mpbid 146 1  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   <.cop 3579   class class class wbr 3982    X. cxp 4602  (class class class)co 5842   [cec 6499   /.cqs 6500   P.cnp 7232   1Pc1p 7233    +P. cpp 7234    <P cltp 7236    ~R cer 7237   R.cnr 7238   -1Rcm1r 7241    +R cplr 7242    <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-ltr 7671  df-m1r 7674
This theorem is referenced by:  map2psrprg  7746  suplocsrlemb  7747  suplocsrlem  7749
  Copyright terms: Public domain W3C validator