ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg Unicode version

Theorem mappsrprg 7866
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7616 . . . . 5  |-  1P  e.  P.
2 addclpr 7599 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 426 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 ltaddpr 7659 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  A  e.  P. )  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
53, 4mpan 424 . . 3  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
65adantr 276 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( 1P  +P.  1P )  <P  ( ( 1P 
+P.  1P )  +P.  A
) )
7 df-m1r 7795 . . . . . 6  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
87breq1i 4037 . . . . 5  |-  ( -1R 
<R  [ <. A ,  1P >. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. A ,  1P >. ]  ~R  )
91a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  1P  e.  P. )
103a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  e. 
P. )
11 id 19 . . . . . 6  |-  ( A  e.  P.  ->  A  e.  P. )
12 ltsrprg 7809 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( A  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
139, 10, 11, 9, 12syl22anc 1250 . . . . 5  |-  ( A  e.  P.  ->  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
148, 13bitrid 192 . . . 4  |-  ( A  e.  P.  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
1514adantr 276 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
16 m1r 7814 . . . 4  |-  -1R  e.  R.
17 opelxpi 4692 . . . . . . 7  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  <. A ,  1P >.  e.  ( P.  X.  P. ) )
18 enrex 7799 . . . . . . . 8  |-  ~R  e.  _V
1918ecelqsi 6645 . . . . . . 7  |-  ( <. A ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
2017, 19syl 14 . . . . . 6  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
211, 20mpan2 425 . . . . 5  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
22 df-nr 7789 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2321, 22eleqtrrdi 2287 . . . 4  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  R. )
24 simpr 110 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  C  e.  R. )
25 ltasrg 7832 . . . 4  |-  ( ( -1R  e.  R.  /\  [
<. A ,  1P >. ]  ~R  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2616, 23, 24, 25mp3an2ani 1355 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2715, 26bitr3d 190 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( ( 1P  +P.  1P )  <P  ( ( 1P  +P.  1P )  +P. 
A )  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  )
) )
286, 27mpbid 147 1  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   <.cop 3622   class class class wbr 4030    X. cxp 4658  (class class class)co 5919   [cec 6587   /.cqs 6588   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    <P cltp 7357    ~R cer 7358   R.cnr 7359   -1Rcm1r 7362    +R cplr 7363    <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-plr 7790  df-ltr 7792  df-m1r 7795
This theorem is referenced by:  map2psrprg  7867  suplocsrlemb  7868  suplocsrlem  7870
  Copyright terms: Public domain W3C validator