ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mappsrprg Unicode version

Theorem mappsrprg 7890
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
mappsrprg  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )

Proof of Theorem mappsrprg
StepHypRef Expression
1 1pr 7640 . . . . 5  |-  1P  e.  P.
2 addclpr 7623 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 426 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 ltaddpr 7683 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  A  e.  P. )  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
53, 4mpan 424 . . 3  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  A ) )
65adantr 276 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( 1P  +P.  1P )  <P  ( ( 1P 
+P.  1P )  +P.  A
) )
7 df-m1r 7819 . . . . . 6  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
87breq1i 4041 . . . . 5  |-  ( -1R 
<R  [ <. A ,  1P >. ]  ~R  <->  [ <. 1P , 
( 1P  +P.  1P ) >. ]  ~R  <R  [
<. A ,  1P >. ]  ~R  )
91a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  1P  e.  P. )
103a1i 9 . . . . . 6  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  e. 
P. )
11 id 19 . . . . . 6  |-  ( A  e.  P.  ->  A  e.  P. )
12 ltsrprg 7833 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( A  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
139, 10, 11, 9, 12syl22anc 1250 . . . . 5  |-  ( A  e.  P.  ->  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
148, 13bitrid 192 . . . 4  |-  ( A  e.  P.  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  (
( 1P  +P.  1P )  +P.  A ) ) )
1514adantr 276 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( 1P  +P.  1P ) 
<P  ( ( 1P  +P.  1P )  +P.  A ) ) )
16 m1r 7838 . . . 4  |-  -1R  e.  R.
17 opelxpi 4696 . . . . . . 7  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  <. A ,  1P >.  e.  ( P.  X.  P. ) )
18 enrex 7823 . . . . . . . 8  |-  ~R  e.  _V
1918ecelqsi 6657 . . . . . . 7  |-  ( <. A ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
2017, 19syl 14 . . . . . 6  |-  ( ( A  e.  P.  /\  1P  e.  P. )  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
211, 20mpan2 425 . . . . 5  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
22 df-nr 7813 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2321, 22eleqtrrdi 2290 . . . 4  |-  ( A  e.  P.  ->  [ <. A ,  1P >. ]  ~R  e.  R. )
24 simpr 110 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  C  e.  R. )
25 ltasrg 7856 . . . 4  |-  ( ( -1R  e.  R.  /\  [
<. A ,  1P >. ]  ~R  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2616, 23, 24, 25mp3an2ani 1355 . . 3  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( -1R  <R  [ <. A ,  1P >. ]  ~R  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) ) )
2715, 26bitr3d 190 . 2  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( ( 1P  +P.  1P )  <P  ( ( 1P  +P.  1P )  +P. 
A )  <->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  )
) )
286, 27mpbid 147 1  |-  ( ( A  e.  P.  /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [
<. A ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   <.cop 3626   class class class wbr 4034    X. cxp 4662  (class class class)co 5925   [cec 6599   /.cqs 6600   P.cnp 7377   1Pc1p 7378    +P. cpp 7379    <P cltp 7381    ~R cer 7382   R.cnr 7383   -1Rcm1r 7386    +R cplr 7387    <R cltr 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7390  df-pli 7391  df-mi 7392  df-lti 7393  df-plpq 7430  df-mpq 7431  df-enq 7433  df-nqqs 7434  df-plqqs 7435  df-mqqs 7436  df-1nqqs 7437  df-rq 7438  df-ltnqqs 7439  df-enq0 7510  df-nq0 7511  df-0nq0 7512  df-plq0 7513  df-mq0 7514  df-inp 7552  df-i1p 7553  df-iplp 7554  df-iltp 7556  df-enr 7812  df-nr 7813  df-plr 7814  df-ltr 7816  df-m1r 7819
This theorem is referenced by:  map2psrprg  7891  suplocsrlemb  7892  suplocsrlem  7894
  Copyright terms: Public domain W3C validator