ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0r Unicode version

Theorem 0r 7350
Description: The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
0r  |-  0R  e.  R.

Proof of Theorem 0r
StepHypRef Expression
1 1pr 7167 . . . 4  |-  1P  e.  P.
2 opelxpi 4482 . . . 4  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  ->  <. 1P ,  1P >.  e.  ( P.  X.  P. ) )
31, 1, 2mp2an 418 . . 3  |-  <. 1P ,  1P >.  e.  ( P. 
X.  P. )
4 enrex 7337 . . . 4  |-  ~R  e.  _V
54ecelqsi 6360 . . 3  |-  ( <. 1P ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
63, 5ax-mp 7 . 2  |-  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
7 df-0r 7331 . 2  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
8 df-nr 7327 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
96, 7, 83eltr4i 2170 1  |-  0R  e.  R.
Colors of variables: wff set class
Syntax hints:    e. wcel 1439   <.cop 3453    X. cxp 4449   [cec 6304   /.cqs 6305   P.cnp 6904   1Pc1p 6905    ~R cer 6909   R.cnr 6910   0Rc0r 6911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-eprel 4125  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-1o 6195  df-oadd 6199  df-omul 6200  df-er 6306  df-ec 6308  df-qs 6312  df-ni 6917  df-pli 6918  df-mi 6919  df-lti 6920  df-plpq 6957  df-mpq 6958  df-enq 6960  df-nqqs 6961  df-plqqs 6962  df-mqqs 6963  df-1nqqs 6964  df-rq 6965  df-ltnqqs 6966  df-inp 7079  df-i1p 7080  df-enr 7326  df-nr 7327  df-0r 7331
This theorem is referenced by:  addgt0sr  7375  ltadd1sr  7376  opelreal  7419  elreal  7420  elrealeu  7421  elreal2  7422  eqresr  7427  addresr  7428  mulresr  7429  pitonn  7439  peano2nnnn  7444  axresscn  7451  axicn  7454  axi2m1  7464  ax0id  7467  axprecex  7469  axcnre  7470
  Copyright terms: Public domain W3C validator