ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrcl Unicode version

Theorem prsrcl 7230
Description: Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
prsrcl  |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  e.  R. )

Proof of Theorem prsrcl
StepHypRef Expression
1 1pr 7014 . . . 4  |-  1P  e.  P.
2 addclpr 6997 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
31, 2mpan2 416 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
4 opelxpi 4430 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  <. ( A  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
51, 4mpan2 416 . . 3  |-  ( ( A  +P.  1P )  e.  P.  ->  <. ( A  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
6 enrex 7184 . . . 4  |-  ~R  e.  _V
76ecelqsi 6274 . . 3  |-  ( <.
( A  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
83, 5, 73syl 17 . 2  |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
9 df-nr 7174 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
108, 9syl6eleqr 2176 1  |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   <.cop 3425    X. cxp 4397  (class class class)co 5589   [cec 6218   /.cqs 6219   P.cnp 6751   1Pc1p 6752    +P. cpp 6753    ~R cer 6756   R.cnr 6757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-1o 6111  df-2o 6112  df-oadd 6115  df-omul 6116  df-er 6220  df-ec 6222  df-qs 6226  df-ni 6764  df-pli 6765  df-mi 6766  df-lti 6767  df-plpq 6804  df-mpq 6805  df-enq 6807  df-nqqs 6808  df-plqqs 6809  df-mqqs 6810  df-1nqqs 6811  df-rq 6812  df-ltnqqs 6813  df-enq0 6884  df-nq0 6885  df-0nq0 6886  df-plq0 6887  df-mq0 6888  df-inp 6926  df-i1p 6927  df-iplp 6928  df-enr 7173  df-nr 7174
This theorem is referenced by:  caucvgsrlemgt1  7241  caucvgsrlemoffcau  7244  recidpirq  7296  axcaucvglemcau  7334
  Copyright terms: Public domain W3C validator