ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplplusgg Unicode version

Theorem mplplusgg 14632
Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplplusg.y  |-  Y  =  ( I mPoly  R )
mplplusg.s  |-  S  =  ( I mPwSer  R )
mplplusg.p  |-  .+  =  ( +g  `  Y )
Assertion
Ref Expression
mplplusgg  |-  ( ( I  e.  V  /\  R  e.  W )  ->  .+  =  ( +g  `  S ) )

Proof of Theorem mplplusgg
StepHypRef Expression
1 mplplusg.p . 2  |-  .+  =  ( +g  `  Y )
2 mplplusg.y . . . 4  |-  Y  =  ( I mPoly  R )
3 mplplusg.s . . . 4  |-  S  =  ( I mPwSer  R )
4 eqid 2209 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
52, 3, 4mplval2g 14624 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  Y  =  ( Ss  (
Base `  Y )
) )
6 eqidd 2210 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( +g  `  S
)  =  ( +g  `  S ) )
7 basfn 13057 . . . 4  |-  Base  Fn  _V
8 fnmpl 14622 . . . . . 6  |- mPoly  Fn  ( _V  X.  _V )
9 elex 2791 . . . . . 6  |-  ( I  e.  V  ->  I  e.  _V )
10 elex 2791 . . . . . 6  |-  ( R  e.  W  ->  R  e.  _V )
11 fnovex 6007 . . . . . 6  |-  ( ( mPoly 
Fn  ( _V  X.  _V )  /\  I  e. 
_V  /\  R  e.  _V )  ->  ( I mPoly 
R )  e.  _V )
128, 9, 10, 11mp3an3an 1358 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPoly  R )  e.  _V )
132, 12eqeltrid 2296 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  Y  e.  _V )
14 funfvex 5620 . . . . 5  |-  ( ( Fun  Base  /\  Y  e. 
dom  Base )  ->  ( Base `  Y )  e. 
_V )
1514funfni 5399 . . . 4  |-  ( (
Base  Fn  _V  /\  Y  e.  _V )  ->  ( Base `  Y )  e. 
_V )
167, 13, 15sylancr 414 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Base `  Y
)  e.  _V )
17 fnpsr 14596 . . . . 5  |- mPwSer  Fn  ( _V  X.  _V )
18 fnovex 6007 . . . . 5  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  e.  _V )
1917, 9, 10, 18mp3an3an 1358 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPwSer  R )  e.  _V )
203, 19eqeltrid 2296 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  S  e.  _V )
215, 6, 16, 20ressplusgd 13128 . 2  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( +g  `  S
)  =  ( +g  `  Y ) )
221, 21eqtr4id 2261 1  |-  ( ( I  e.  V  /\  R  e.  W )  ->  .+  =  ( +g  `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180   _Vcvv 2779    X. cxp 4694    Fn wfn 5289   ` cfv 5294  (class class class)co 5974   Basecbs 12998   +g cplusg 13076   mPwSer cmps 14590   mPoly cmpl 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-tset 13095  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-psr 14592  df-mplcoe 14593
This theorem is referenced by:  mpladd  14633
  Copyright terms: Public domain W3C validator