ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplplusgg Unicode version

Theorem mplplusgg 14509
Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplplusg.y  |-  Y  =  ( I mPoly  R )
mplplusg.s  |-  S  =  ( I mPwSer  R )
mplplusg.p  |-  .+  =  ( +g  `  Y )
Assertion
Ref Expression
mplplusgg  |-  ( ( I  e.  V  /\  R  e.  W )  ->  .+  =  ( +g  `  S ) )

Proof of Theorem mplplusgg
StepHypRef Expression
1 mplplusg.p . 2  |-  .+  =  ( +g  `  Y )
2 mplplusg.y . . . 4  |-  Y  =  ( I mPoly  R )
3 mplplusg.s . . . 4  |-  S  =  ( I mPwSer  R )
4 eqid 2206 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
52, 3, 4mplval2g 14501 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  Y  =  ( Ss  (
Base `  Y )
) )
6 eqidd 2207 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( +g  `  S
)  =  ( +g  `  S ) )
7 basfn 12934 . . . 4  |-  Base  Fn  _V
8 fnmpl 14499 . . . . . 6  |- mPoly  Fn  ( _V  X.  _V )
9 elex 2784 . . . . . 6  |-  ( I  e.  V  ->  I  e.  _V )
10 elex 2784 . . . . . 6  |-  ( R  e.  W  ->  R  e.  _V )
11 fnovex 5984 . . . . . 6  |-  ( ( mPoly 
Fn  ( _V  X.  _V )  /\  I  e. 
_V  /\  R  e.  _V )  ->  ( I mPoly 
R )  e.  _V )
128, 9, 10, 11mp3an3an 1356 . . . . 5  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPoly  R )  e.  _V )
132, 12eqeltrid 2293 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  Y  e.  _V )
14 funfvex 5600 . . . . 5  |-  ( ( Fun  Base  /\  Y  e. 
dom  Base )  ->  ( Base `  Y )  e. 
_V )
1514funfni 5381 . . . 4  |-  ( (
Base  Fn  _V  /\  Y  e.  _V )  ->  ( Base `  Y )  e. 
_V )
167, 13, 15sylancr 414 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( Base `  Y
)  e.  _V )
17 fnpsr 14473 . . . . 5  |- mPwSer  Fn  ( _V  X.  _V )
18 fnovex 5984 . . . . 5  |-  ( ( mPwSer  Fn  ( _V  X.  _V )  /\  I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  e.  _V )
1917, 9, 10, 18mp3an3an 1356 . . . 4  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( I mPwSer  R )  e.  _V )
203, 19eqeltrid 2293 . . 3  |-  ( ( I  e.  V  /\  R  e.  W )  ->  S  e.  _V )
215, 6, 16, 20ressplusgd 13005 . 2  |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( +g  `  S
)  =  ( +g  `  Y ) )
221, 21eqtr4id 2258 1  |-  ( ( I  e.  V  /\  R  e.  W )  ->  .+  =  ( +g  `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    X. cxp 4677    Fn wfn 5271   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953   mPwSer cmps 14467   mPoly cmpl 14468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-tset 12972  df-rest 13117  df-topn 13118  df-topgen 13136  df-pt 13137  df-psr 14469  df-mplcoe 14470
This theorem is referenced by:  mpladd  14510
  Copyright terms: Public domain W3C validator